		Conclusion

A Model of Economic Mobility and the Distribution of Wealth

Ricardo Fernholz

Claremont McKenna College

August 17, 2015

3 x 3

Introduction		
Motivation		

Income and Wealth Distributions

- Significant concentration of income and wealth observed worldwide
- Richest 1% holds 40% of wealth, earns 25% of income in U.S.
 - Atkinson, Piketty, and Saez (2011), Saez and Zucman (2014)
- Gini coefficients of 0.55 for income and 0.80 for wealth in U.S.
 - Díaz-Giménez, Quadrini, Ríos-Rull, and Rodríguez (2002)
 - Davies, Sandström, Shorrocks, and Wolff (2011)
- Many different explanations have been proposed
 - Krussel and Smith (1998), Quadrini (2000), De Nardi (2004)

Introduction		
Motivation		

Idiosyncratic Investment Risk

- Uninsurable idiosyncratic investment risk another possible explanation
 - Angeletos and Calvet (2006), Benhabib, Bisin, and Zhu (2011)
 - Generates realistic stationary Pareto distribution of wealth
- Strong empirical motivation for uninsurable investment risk
 - ▶ Housing: Case and Shiller (1989), Flavin and Yamashita (2002)
 - Private equity: Moskowitz and Vissing-Jorgensen (2002)
 - ► Together, these make up more than 50% of total U.S. household wealth: Bertaut and Starr-McCluer (2002) and Wolff (2012)

Introduction		
Preview of Results		

Contributions

- 1. Application of new rank-based solution technique (Fernholz, 2015)
 - Nonparametric approach that can be used to solve many models
 - Household-by-household solution for a simple model with idiosyncratic investment risk and intergenerational transfers
- 2. Detailed description and analysis of economic mobility
 - Analytic and numerical results for several measures of mobility
- 3. Examination of the implications of risk-sharing subgroups of households
 - Results about welfare and distributional implications

Economic Mobility and the Distribution of Wealth

 $\label{eq:inequality} \text{inequality} = \frac{\text{idiosyncratic investment risk}}{\text{cross-sectional mean reversion}}$

 $\label{eq:mobility} \text{mobility} = \frac{\text{cross-sectional mean reversion}}{\text{inequality}}$

- Mobility result is consistent with recent empirical work
 - "Great Gatsby curve" (Krueger, 2012; Corak, 2013)
 - Geographical variation within U.S. (Chetty et al., 2014)
- Risk-sharing subset of HHs increases welfare and wealth accumulation
 - Subgroup rises or falls in the distrib. depending on level of inequality

イロト イヨト イヨト イヨト

A Nonparametric Approach to Wealth Distribution

- Economy is populated by N households, time $t \in [0,\infty)$ is continuous
- Total wealth of each household given by process w_i:

$$d \log w_i(t) = \mu_i(t) dt + \sum_{z=1}^M \delta_{iz}(t) dB_z(t)$$

- B_1, \ldots, B_M are independent Brownian motions ($M \ge N$)
- Little structure imposed on μ_i and δ_{iz}
- Only for i.i.d.-like processes is model clearly inappropriate

イロト 人間ト イヨト イヨト

Rank-Based Wealth Dynamics and Local Times

Let $w_{(k)}(t)$ be the total wealth of the k-th wealthiest household:

$$d \log w_{(k)}(t) = \mu_{p_t(k)}(t) dt + \sum_{z=1}^{M} \delta_{p_t(k)z}(t) dB_z(t) + \frac{1}{2} d\Lambda_{\log w_{(k)} - \log w_{(k+1)}}(t) - \frac{1}{2} d\Lambda_{\log w_{(k-1)} - \log w_{(k)}}(t).$$

• $p_t(k) = i$ when household *i* is the *k*-th wealthiest household

- Λ_x is the *local time* at 0 for the process x
 - Measures amount of time x spends near 0 (Karatzas and Shreve, 1991)

Let $\theta_{(k)}(t)$ be share of total wealth held by k-th wealthiest household:

$$\theta_{(k)}(t) = \frac{w_{(k)}(t)}{w(t)} = \frac{w_{(k)}(t)}{w_1(t) + \dots + w_N(t)}.$$

3

Rank-Based Wealth Dynamics and Local Times

Let $w_{(k)}(t)$ be the total wealth of the k-th wealthiest household:

$$d \log w_{(k)}(t) = \mu_{p_t(k)}(t) dt + \sum_{z=1}^{M} \delta_{p_t(k)z}(t) dB_z(t) + \frac{1}{2} d\Lambda_{\log w_{(k)} - \log w_{(k+1)}}(t) - \frac{1}{2} d\Lambda_{\log w_{(k-1)} - \log w_{(k)}}(t).$$

- $p_t(k) = i$ when household *i* is the *k*-th wealthiest household
- Λ_x is the *local time* at 0 for the process x
 - Measures amount of time x spends near 0 (Karatzas and Shreve, 1991)

Let $\theta_{(k)}(t)$ be share of total wealth held by k-th wealthiest household:

$$heta_{(k)}(t) = rac{w_{(k)}(t)}{w(t)} = rac{w_{(k)}(t)}{w_1(t) + \dots + w_N(t)}$$

3

Relative Growth Rates and Volatilities

$$d \log w_{(k)}(t) = \mu_{p_t(k)}(t) dt + \sum_{z=1}^M \delta_{p_t(k)z}(t) dB_z(t) + \text{ local time terms}$$

Let α_k be the relative growth rate of the k-th wealthiest household,

$$\alpha_k = \lim_{T \to \infty} \frac{1}{T} \int_0^T \left(\mu_{p_t(k)}(t) - \mu(t) \right) dt,$$

where $\mu(t)$ is growth rate of total wealth $w(t) = w_1(t) + \cdots + w_N(t)$.

Let σ_k be the volatility of relative wealth holdings,

$$\sigma_k^2 = \lim_{T\to\infty} \frac{1}{T} \int_0^T \sum_{z=1}^M \left(\delta_{p_t(k)z}(t) - \delta_{p_t(k+1)z}(t) \right)^2 dt.$$

3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Theorem (Distribution of Wealth)

There is a stable distribution of wealth in this economy if and only if $\alpha_1 + \cdots + \alpha_k < 0$, for $k = 1, \ldots, N - 1$. Furthermore, if there is a stable distribution of wealth, then for $k = 1, \ldots, N - 1$, this distribution satisfies

$$\lim_{T\to\infty}\frac{1}{T}\int_0^T \left(\log\hat\theta_{(k)}(t)-\log\hat\theta_{(k+1)}(t)\right)\,dt=\frac{\sigma_k^2}{-4(\alpha_1+\cdots+\alpha_k)}.$$

• Stable distribution entirely determined by two factors

- 1. Volatility of relative wealth holdings: σ_k^2
- 2. Cross-sectional mean reversion: $-\alpha_k$
- Theorem describes behavior of stable versions of wealth shares, $\hat{\theta}_{(k)}$

3

イロト イポト イヨト イヨト

		Model	
Consumption, Investme	nt, Taxes, and Wealth		

Heterogeneous Households and Idiosyncratic Risk

- Economy is populated by N dynastic households that live for S years
 - Choose savings-consumption for $t \leq S$, and choose bequest for t = S
- Households have two investment options:
 - 1. Risk-free asset that pays a return of r
 - 2. Individual-specific asset subject to idiosyncratic, uninsurable risk

For all i = 1, ..., N, price of individual-specific risky asset given by

$$dP_i(t) = \lambda P_i(t) dt + \kappa P_i(t) dB_i(t)$$

Angeletos & Panousi (2011): producivity shocks for private business

э.

		Model	
Consumption, Investmer	it, Taxes, and Wealth		

Household Maximization Problems

Each household *i* solves the problem:

$$J(w,t) = \max_{c_i,\phi_i} E_t \left[\int_t^S e^{-\rho(s-t)} \frac{c_i^{1-\gamma}(s)}{1-\gamma} \, ds + e^{-\rho(S-t)} \chi \frac{((1-\tau)w_i(S))^{1-\gamma}}{1-\gamma} \right]$$

s.t. $dw_i(s) = [rw_i(s) + (\lambda - r)\phi_i(s)w_i(s) - c_i(s)] \, ds + \kappa \phi_i(s)w_i(s) \, dB_i(s)$

 $c_i(t)$: Consumption

- $\phi_i(t)$: Fraction of wealth $w_i(t)$ invested in risky asset
- $\tau < 1$: Estate tax rate
- $\chi > {\rm 0}$: Intensity of bequest motive
- $\gamma \geq 1$: Coefficient of relative risk aversion

		Model	
Consumption, Investme	nt, Taxes, and Wealth		

Proposition (Consumption, Investment, and Bequests)

For each household i = 1, ..., N and at each point in time $0 \le t \le S$, the policy functions $\phi_i(t)$ and $c_i(t)$ are given by

$$\phi_i(t) = \frac{\lambda - r}{\gamma \kappa^2},$$

$$c_i(t) = \left(\frac{e^{\eta(S-t)} - 1}{\eta} + (\chi(1-\tau)^{1-\gamma})^{\frac{1}{\gamma}} e^{\eta(S-t)}\right)^{-1} w_i(t),$$

where

$$\eta = \frac{(1-\gamma)r - \rho}{\gamma} + \frac{(1-\gamma)(\lambda - r)^2}{2\gamma^2 \kappa^2}.$$

Standard intuition behind optimal household behavior (Merton, 1969)

Ricardo Fernholz (CMC

3

		Model	
Consumption, Investme	ent, Taxes, and Wealth		

Household Wealth Dynamics

In equilibrium, each household $i = 1, \ldots, N$ has wealth dynamics that follow

$$d \log w_i(t) = \psi(t) \, dt + \left(rac{\lambda-r}{\gamma\kappa}
ight) \, dB_i(t),$$

where $0 \le t \le S$, and

$$\psi(t) = r + \frac{(2\gamma - 1)(\lambda - r)^2}{2\gamma^2 \kappa^2} - \left(\frac{e^{\eta(S-t)} - 1}{\eta} + (\chi(1 - \tau)^{1-\gamma})^{\frac{1}{\gamma}} e^{\eta(S-t)}\right)^{-1}$$

At the end of its life (at time t = S), each household *i* leaves an after-tax bequest of $(1 - \tau)w_i(S)$ to its newborn offspring.

		Model	
Consumption, Investme	nt, Taxes, and Wealth		

Fiscal Transfers to Newborn Offspring

- Model as it is setup so far has no stable distribution of wealth
 - Gabaix (1999, 2009), Fernholz and Fernholz (2014)
- Stable distribution requires some mechanism of mean reversion
 - Fiscal transfer to poorest households (Benhabib et al., 2014)
 - Finite lifespans and labor income (Benhabib et al., 2011)
- Introduce fiscal policy in which government provides newborn households with a single lump-sum transfer
 - Each newborn household *i* receives $\nu_i(t)$, where $0 \le \nu_i(t) \le \frac{\tau_W(t)}{N}$

э

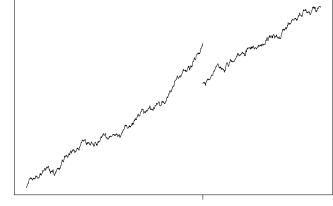
		Model	
Consumption, Investmer	nt, Taxes, and Wealth		

Fiscal Transfers to Newborn Offspring

- Model as it is setup so far has no stable distribution of wealth
 - Gabaix (1999, 2009), Fernholz and Fernholz (2014)
- Stable distribution requires some mechanism of mean reversion
 - Fiscal transfer to poorest households (Benhabib et al., 2014)
 - Finite lifespans and labor income (Benhabib et al., 2011)
- Introduce fiscal policy in which government provides newborn households with a single lump-sum transfer
 - Each newborn household *i* receives $\nu_i(t)$, where $0 \le \nu_i(t) \le \frac{\tau_N(t)}{N}$

		Model	
Dynastic Wealth Dynan	nics		

Discontinuous Wealth Processes



Time = S

Figure: Because of estate tax and lump-sum transfers, wealth processes are discontinuous at times of intergenerational transfers.

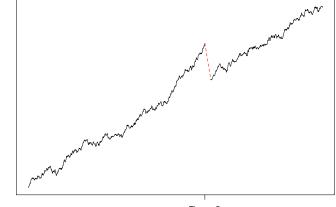
Ricardo Fernholz (CMC

Household Wealth Holdings

Mobility and Wealth Distribution

		Model	
Dynastic Wealth Dynar	nics		

Continuous Wealth Processes



Time = S

Figure: Solution: Change discontinuous wealth processes w_i into continuous wealth processes \tilde{w}_i .

Ricardo Fernholz (CMC

Household Wealth Holdings

		Model	
Dynastic Wealth Dynar	nics		

Application: General Solution Techniques

Recall the general characterization of the stable wealth distribution,

$$\lim_{T\to\infty}\frac{1}{T}\int_0^T \left(\log\hat{\theta}_{(k)}(t) - \log\hat{\theta}_{(k+1)}(t)\right) dt = \frac{\sigma_k^2}{-4(\alpha_1 + \cdots + \alpha_k)},$$

where

$$\alpha_{k} = \lim_{T \to \infty} \frac{1}{T} \int_{0}^{T} \left(\mu_{p_{t}(k)}(t) - \mu(t) \right) dt,$$

$$\sigma_{k}^{2} = \lim_{T \to \infty} \frac{1}{T} \int_{0}^{T} \sum_{z=1}^{M} \left(\delta_{p_{t}(k)z}(t) - \delta_{p_{t}(k+1)z}(t) \right)^{2} dt.$$

To solve the model, then, it is necessary to determine α_k and σ_k for the continuous wealth processes \tilde{w}_i .

Ricardo Fernholz (CMC

		Model	
Dynastic Wealth Dynar	nics		

Rank-Based Relative Growth Rates and Volatilities

$$\begin{split} \tilde{\alpha}_{k} &= \lim_{j \to \infty} \frac{1}{S} \log \left(1 - \tau + \frac{\nu_{(k)}(jS)}{\tilde{w}_{(k)}(jS)} \right) - \frac{1}{SN} \sum_{\ell=1}^{N} \log \left(1 - \tau + \frac{\nu_{(\ell)}(jS)}{\tilde{w}_{(\ell)}(jS)} \right) \\ \tilde{\sigma}_{k} &= \tilde{\sigma} = \sqrt{2} \left(\frac{\lambda - r}{\gamma \kappa} \right) \end{split}$$

- Cross-sectional mean reversion, as measured by $-\tilde{\alpha}_k$, depends on how redistributive lump-sum transfers to newborn offspring are
- Household exposure to idiosyncratic investment risk, $\tilde{\sigma}$, depends on risk-adjusted excess return of individual-specific assets

		Model	
Mobility and Inequality	in Equilibrium		

Theorem (Equilibrium Distribution of Wealth)

There exists a steady-state distribution of wealth in this economy if and only if $\tilde{\alpha}_1 + \cdots + \tilde{\alpha}_k < 0$, for $k = 1, \ldots, N - 1$. Furthermore, if there is a steady-state distribution of wealth, then for $k = 1, \ldots, N - 1$, this distribution satisfies

$$E\left[\log heta^*_{(k)}(t) - \log heta^*_{(k+1)}(t)
ight] = rac{ ilde{\sigma}^2}{-4(ilde{lpha}_1 + \cdots + ilde{lpha}_k)}, \quad ext{a.s.}$$

Equilibrium distribution of wealth depends on two factors

- 1. Cross-sectional mean reversion: $-\tilde{\alpha}_k$
- 2. Household exposure to idiosyncratic investment risk: $\tilde{\sigma}$

		Model	
Mobility and Inequality	in Equilibrium		

Theorem (Economic Mobility)

If there exists a steady-state equilibrium distribution of wealth, then for all k = 1, ..., N - 1,

$$E\left[S_{k}(t) \mid \theta_{(k)}^{*}(t), \theta_{(k+1)}^{*}(t)\right] = \frac{\log \theta_{(k)}^{*}(t) - \log \theta_{(k+1)}^{*}(t)}{-2(\tilde{\alpha}_{1} + \dots + \tilde{\alpha}_{k})},$$
$$E\left[S_{k}(t)\right] = \frac{\tilde{\sigma}^{2}}{8(\tilde{\alpha}_{1} + \dots + \tilde{\alpha}_{k})^{2}}.$$

- S_k(t) marks the first time after t that the k + 1-th wealthiest household overtakes the k-th wealthiest household
- Mobility is decreasing in inequality, and increasing in mean reversion
 - Other, more common measures of mobility show same behavior

		Model	
Mobility and Inequality	in Equilibrium		

Implications of Increased Market Completeness

- Suppose that some subgroup of households can pool idiosyncratic risk
 - By symmetry, all households fully diversify across available risky assets
- This risk-sharing has two separate effects in equilibrium:
 - 1. Faster wealth accumulation, a mechanical conseq. of diversific.
 - 2. More risky investment, as risk-sharing subgroup of households changes behavior in response to better investment options
- Both effects increase welfare for all households in the economy
- If inequality is high, risk-sharing subgroup rises to the top of the wealth distribution; if inequality is low, it drops near the bottom

イロト 人間ト イヨト イヨト

- 31

		Model	
Mobility and Inequality	in Equilibrium		

Implications of Increased Market Completeness

- Suppose that some subgroup of households can pool idiosyncratic risk
 - By symmetry, all households fully diversify across available risky assets
- This risk-sharing has two separate effects in equilibrium:
 - 1. Faster wealth accumulation, a mechanical conseq. of diversific.
 - 2. More risky investment, as risk-sharing subgroup of households changes behavior in response to better investment options
- Both effects increase welfare for all households in the economy
- If inequality is high, risk-sharing subgroup rises to the top of the wealth distribution; if inequality is low, it drops near the bottom

		Model	
Mobility and Inequality	in Equilibrium		

Understanding the Results

 $\label{eq:inequality} \text{inequality} = \frac{\text{idiosyncratic investment risk}}{\text{cross-sectional mean reversion}}$

 $\label{eq:mobility} \text{mobility} = \frac{\text{cross-sectional mean reversion}}{\text{inequality}}$

- Broadly consistent with some recent empirical results
 - "Great Gatsby curve" (Krueger, 2012; Corak, 2013)
 - ► Geographical variation within U.S. (Chetty et al., 2014)
- Presence of a risk-sharing subset of households raises welfare for all
 - Subgroup rises or falls in the distrib. depending on level of inequality

= nar

$$E\left[\log \theta^*_{(k)}(t) - \log \theta^*_{(k+1)}(t)\right] = \frac{\tilde{\sigma}^2}{-2(\tilde{\alpha}_1 + \cdots + \tilde{\alpha}_k)}$$

- Number of households N = 1,000,000, length of life S = 50
- Discount rate ho= 0.03, bequest motive $\chi=$ 1, estate tax rate au= 0.2
- Idiosyncratic volatilities: $\tilde{\sigma} = \sqrt{2} \left(\frac{\lambda r}{\gamma \kappa} \right)$
 - $\ \ \, \lambda=0.07, \kappa=0.2, \gamma=1.5, r=0.03 \quad \Longrightarrow \quad \tilde{\sigma}=0.189$
 - Flavin & Yamashita (2002), Moskowitz & Vissing-Jorgensen (2002), Angeletos (2007), Benhabib, et al. (2011, 2014)

3

イロト イポト イヨト イヨト

- All households receive same lump sum transfer $\nu = \nu_1 = \cdots = \nu_N$
- If we write ν as a fraction of total wealth of all households, so that $\nu = \bar{\nu}\tilde{w}$, then the parameters $\tilde{\alpha}_k$ satisfy

$$\begin{split} \tilde{\alpha}_{k} &= \lim_{j \to \infty} \frac{1}{S} \log \left(1 - \tau + \frac{\nu}{\tilde{w}_{(k)}(jS)} \right) - \frac{1}{SN} \sum_{\ell=1}^{N} \log \left(1 - \tau + \frac{\nu}{\tilde{w}_{(\ell)}(jS)} \right) \\ &= \lim_{j \to \infty} \frac{1}{S} \log \left(1 - \tau + \frac{\bar{\nu}}{\tilde{\theta}_{(k)}(jS)} \right) - \frac{1}{SN} \sum_{\ell=1}^{N} \log \left(1 - \tau + \frac{\bar{\nu}}{\tilde{\theta}_{(\ell)}(jS)} \right) \end{split}$$

• Choose value of $\bar{\nu}$ that most closely matches U.S. wealth distribution data from Saez and Zucman (2014)

1

(日) (同) (三) (三)

Household Wealth	Model Wealth Shares	U.S. Wealth Shares
Percent Rank		
0-0.01	11.6%	11.2%
0.01-0.1	10.7%	10.8%
0.1-0.5	11.7%	12.5%
0.5-1	6.5%	7.3%
1-10	29.5%	35.4%
10-100	29.8%	22.8%

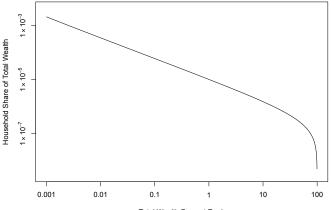
Table: Household wealth shares for the baseline parameterization of the model and for the 2012 U.S. wealth distribution.

Ricardo Fernholz (CMC)

Mobility and Wealth Distribution

< 🗗 🕨 🔸

э



Total Wealth Percent Rank

Figure: Individual households' wealth shares for the baseline parameterization of the model.

Ricardo Fernholz (CMC)

∃ →

		Numerical Results	

Changing Inequality

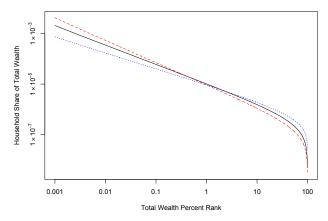


Figure: Individual households' wealth shares for three parameterizations of the model: baseline (solid black line), lower lump-sum transfer ratio (dashed red line), and lower exposure to idiosyncratic investment risk (dotted blue line).

Ricardo Fernholz (CMC

Mobility and Wealth Distribution

Baseline Parameterization, Intergenerational Mobility

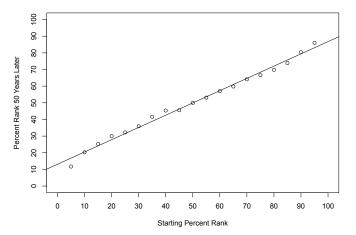


Figure: Intergenerational mobility (50 years) for the baseline parameterization of the model. The rank-rank slope and intercept are 0.737 and 12.69, respectively.

Ricardo Fernholz (CMC

Mobility and Wealth Distribution

Lower Lump-Sum Transfer Ratio

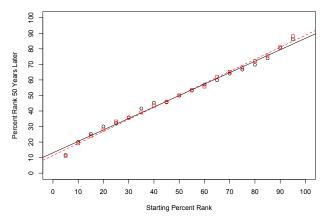


Figure: Intergenerational mobility (50 years) for two parameterizations of the model: baseline (solid black line, rank-rank slope of 0.737) and lower lump-sum transfer ratio (dashed red line, rank-rank slope of 0.765).

Ricardo Fernholz (CMC

Mobility and Wealth Distribution

Lower Investment Risk

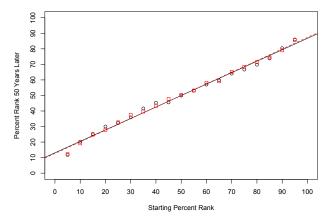


Figure: Intergenerational mobility (50 years) for two parameterizations of the model: baseline (solid black line, rank-rank slope of 0.737) and lower exposure to idiosyncratic investment risk (dashed red line, rank-rank slope of 0.760).

Ricardo Fernholz (CMC

Mobility and Wealth Distribution

Lower Lump-Sum Transfer Ratio and Investment Risk

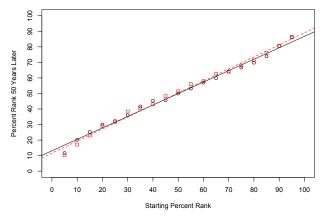


Figure: Intergenerational mobility (50 years) for two parameterizations of the model: baseline and both lower lump-sum transfer ratio and lower exposure to idiosyncratic investment risk (dashed red line, rank-rank slope of 0.787).

Ricardo Fernholz (CMC

Mobility and Wealth Distribution

Baseline Parameterization, Risk-Sharing Subgroup

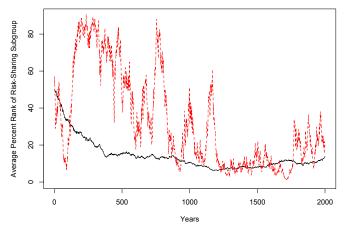


Figure: The average percent rank of the households in the risk-sharing subgroup over time for the baseline parameterization of the model.

Ricardo Fernholz (CMC

Mobility and Wealth Distribution

Changing Inequality, Risk-Sharing Subgroup

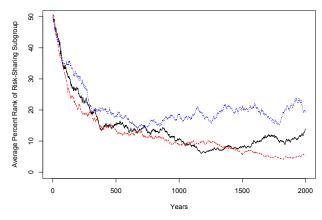


Figure: Average percent rank of risk-sharing subgroup for 3 parameterizations: baseline (solid black line), lower lump-sum transfer ratio (dashed red line), and lower exposure to idiosyncratic investment risk (dotted blue line).

Ricardo Fernholz (CMC

Mobility and Wealth Distribution

Extensions and Applications

 $\label{eq:inequality} \text{inequality} = \frac{\text{idiosyncratic investment risk}}{\text{cross-sectional mean reversion}}$

 $\label{eq:mobility} \text{mobility} = \frac{\text{cross-sectional mean reversion}}{\text{inequality}}$

- What if households are different from each other?
 - Heterogeneous income profiles, or "skill", reduces mobility
- What about purely empirical applications of the solution techniques?
 - U.S. wealth distribution (Fernholz, 2015)
 - U.S. bank size distribution (Fernholz and Koch, 2015)

Summary and Conclusion

Three main contributions:

- 1. Application of new rank-based solution technique (Fernholz, 2015)
 - Nonparametric approach that can be used to solve many models
- 2. Detailed description and analysis of economic mobility
 - Analytic and numerical results for several measures of mobility
- 3. Examination of the implications of risk-sharing subgroups of households
 - Results about welfare and distributional implications

• • • • • • • •

3

		Conclusion

The End

Thank You

Ricardo Fernholz (CMC)

Mobility and Wealth Distribution

æ

<ロ> (日) (日) (日) (日) (日)