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Power Law Distributions

Power laws are characterized by a linear relationship between log size

and log rank

Power laws are common in economics, finance, and the social sciences

more broadly

I Income and wealth: Atkinson, Piketty and Saez (2011), Piketty (2014)

I Firm size: Simon and Bonini (1958), Luttmer (2007, 2011)

I Bank size: Janicki and Prescott (2006), Fernholz and Koch (2016)

I City size: Gabaix (1999), Ioannides and Skouras (2013)
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Random Growth Processes and Power Laws

Power laws and Pareto distributions commonly modeled as the result

of random growth processes

I Champernowne (1953), Luttmer (2007), Benhabib, Bisin & Zhu (2011)

Random growth following Gibrat’s law in the presence of some friction

yields a power law distribution

I Gabaix (1999) uses this basic insight to generate Zipf’s law for cities

I Many papers use this basic insight to generate power laws
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Empirical Methods for Dynamic Power Law Distributions

Rank-based, nonparametric methods characterize general power law

distributions in any continuous random growth setting

I Unifying framework that encompasses and extends previous literature

I Up to now, no empirical methods for dynamic power laws in economics

Provides simple description of stationary distribution:

concentration =
idiosyncratic volatilities

reversion rates

I Reversion rates measure cross-sectional mean reversion
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Applications

Growing concentration of U.S. banking assets starting in the 1990s

I Fernholz and Koch (2016)

The distribution of relative commodity prices

I Methods accurately describe distribution of relative commodity prices

I Future commodity price predictability based on rank

Many other potential applications in economics and finance

I Increasing inequality (Atkinson et al., 2011; Saez and Zucman, 2014)

I Increasing house price dispersion (Van Nieuwerburgh and Weill, 2010)
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Dynamics

Basics

Economy is populated by N agents, time t ∈ [0,∞) is continuous

Total unit holdings of each agent given by process xi :

d log xi (t) = µi (t) dt +
M∑
s=1

δis(t) dBs(t)

I B1, . . . ,BM are independent Brownian motions (M ≥ N)

I Nonparametric approach with little structure imposed on µi and δis

I More general than previous random growth literature based on equal

growth rates and volatilities of Gibrat’s Law (Gabaix, 1999, 2009)
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Dynamics

Rank-Based Unit Dynamics and Local Times

Let x(k)(t) be the unit holdings of the k-th ranked agent:

d log x(k)(t) = µpt(k)(t) dt +
M∑
s=1

δpt(k)s(t) dBz(t)

+
1

2
dΛlog x(k)−log x(k+1)

(t)− 1

2
dΛlog x(k−1)−log x(k)

(t)

pt(k) = i when agent i has k-th largest unit holdings

Λz is the local time at 0 for the process z

I Measures amount of time z spends near 0 (Karatzas and Shreve, 1991)

Let θ(k)(t) be share of total units held by k-th ranked agent:

θ(k)(t) =
x(k)(t)

x(t)
=

x(k)(t)

x1(t) + · · ·+ xN(t)
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Dynamics

Relative Growth Rates and Volatilities

d log x(k)(t) = µpt(k)(t) dt +
M∑
s=1

δpt(k)s(t) dBs(t) + local time terms

Let αk be the relative growth rate of the k-th ranked agent,

αk = lim
T→∞

1

T

∫ T

0

(
µpt(k)(t)− µ(t)

)
dt,

where µ(t) is growth rate of total units x(t) = x1(t) + · · ·+ xN(t).

Let σk be the volatility of relative unit holdings log θ(k) − log θ(k+1),

σ2
k = lim

T→∞

1

T

∫ T

0

M∑
s=1

(
δpt(k)s(t)− δpt(k+1)s(t)

)2
dt.
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Dynamics

Reversion Rates and Idiosyncratic Volatilities

Refer to −αk as reversion rates of unit holdings

I Equal to minus the growth rate of units for the rank k agent relative to

the growth rate of total units of all agents

I A measure of cross-sectional mean reversion

Parameters σk measure idiosyncratic unit volatility

I Measures volatility of relative unit holdings of adjacent ranked agents

I This includes shocks that affect only one agent as well as shocks that

affect multiple agents in different ways
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Stationary Distribution

Theorem

There is a stationary distribution of unit holdings by agents if and only if

α1 + · · ·+ αk < 0, for k = 1, . . . ,N − 1. Furthermore, if there is a

stationary distribution, then for k = 1, . . . ,N − 1, this distribution satisfies

E
[
log θ∗(k)(t)− log θ∗(k+1)(t)

]
=

σ2
k

−4(α1 + · · ·+ αk)
.

Distribution shaped entirely by two factors

1. Idiosyncratic unit volatilities: σk

2. Reversion rates of unit holdings: −αk

Only a change in these factors can alter the distribution

Theorem describes behavior of stable versions of unit shares, θ∗(k)
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Stationary Distribution

Idiosyncratic Volatility, Reversion Rates, and Concentration

Sum of Reversion Rates  − (α1 +… +αk)
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=

σ2
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Stationary Distribution

...

θ(k)(t)
...
...

...

θ(k)(t + 1)
...
...
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Stationary Distribution

...

θpt(k)(t) = θ(k)(t)

...

...

θpt(j)(t) = θ(j)(t)
...

...

θpt(j)(t + 1) = θ(k)(t + 1)
...

θpt(k)(t + 1)
...
...
...
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Stationary Distribution

Mean-Reversion Condition

Theorem

There is a stationary distribution of unit holdings by agents if and only if

α1 + · · ·+ αk < 0, for k = 1, . . . ,N − 1. Furthermore, if there is a

stationary distribution, then for k = 1, . . . ,N − 1, this distribution satisfies

E
[
log θ∗(k)(t)− log θ∗(k+1)(t)

]
=

σ2
k

−4(α1 + · · ·+ αk)
.

Unit holdings of top k agents must on average grow more slowly than

unit holdings of bottom N − k agents

I Otherwise, the distribution of unit holdings is asymptotically degenerate

There is a rank-based predictability for agents’ future unit holdings
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Stationary Distribution

Top k Agents

at time t
θ(1)(t)

θ(2)(t)
......

θ(k)(t)

Top k Agents

at time t + 1
θ(1)(t + 1)

θ(2)(t + 1)
......

θ(k)(t + 1)

θ(k+1)(t)

θ(k+2)(t)
......

θ(N)(t)

θ(k+1)(t + 1)

θ(k+2)(t + 1)
......

θ(N)(t + 1)
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Gibrat’s Law, Zipf’s Law, and Pareto Distributions

Relation to Previous Literature

Rank-based, nonparametric approach nests much of previous literature

Gibrat’s law: Growth rates and volatilities equal for all agents

I Gabaix (2009) shows that Gibrat’s law yields a Pareto distribution

I Gabaix (1999) shows that Gibrat’s law sometimes yields Zipf’s law

Gibrat’s law: α = α1 = · · · = αN−1 and σ = σ1 = · · · = σN−1

This implies that:

E
[
log θ∗(k)(t)− log θ∗(k+1)(t)

]
=

σ2
k

−4(α1 + · · ·+ αk)
=

σ2

−4kα
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Gibrat’s Law, Zipf’s Law, and Pareto Distributions

Gibrat’s Law and Pareto Distributions

Rank-based, nonparametric approach nests much of previous literature

Gibrat’s law: Growth rates and volatilities equal for all agents

I Gabaix (2009) shows that Gibrat’s law yields a Pareto distribution

I Gabaix (1999) shows that Gibrat’s law sometimes yields Zipf’s law

Gibrat’s law: α = α1 = · · · = αN−1 and σ = σ1 = · · · = σN−1

Log-log plot of shares θ(k) vs. rank k has constant slope (Pareto):

E
[
log θ∗(k)(t)− log θ∗(k+1)(t)

]
log k − log k + 1

≈ −kσ
2

−4kα
=
σ2

4α
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Gibrat’s Law, Zipf’s Law, and Pareto Distributions

Gibrat’s Law and Zipf’s Law

Rank-based, nonparametric approach nests much of previous literature

Gibrat’s law: Growth rates and volatilities equal for all agents

I Gabaix (2009) shows that Gibrat’s law yields a Pareto distribution

I Gabaix (1999) shows that Gibrat’s law sometimes yields Zipf’s law

Gibrat’s law: α = α1 = · · · = αN−1 and σ = σ1 = · · · = σN−1

Log-log plot of shares θ(k) vs. rank k has slope -1 (Zipf’s law):

E
[
log θ∗(k)(t)− log θ∗(k+1)(t)

]
log k − log k + 1

≈ −kσ
2

−4kα
=
σ2

4α
= −1 iff σ2 = −4α
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Estimation

Estimation: Reversion Rates

It can be shown that for all k = 1, . . . ,N − 1, the estimators −α̂k are

increasing in the quantity

log
[
θpt+1(1)(t + 1) + · · ·+ θpt+1(k)(t + 1)

]
− log

[
θpt(1)(t + 1) + · · ·+ θpt(k)(t + 1)

]
.

Reversion rates measure the intensity of mean reversion, since they are

increasing in the difference between the time t + 1 units of the largest

agents at t + 1 and the time t + 1 units of the largest agents at t.
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Estimation

Estimation: Idiosyncratic Volatilities

Idiosyncratic volatilities measure variance of relative unit holdings for

adjacent ranked agents, log θ(k) − log θ(k+1)

Discrete-time approximation yields

σ̂2
k =

1

T

T∑
t=1

[(
log θpt(k)(t + 1)− log θpt(k+1)(t + 1)

)
−
(
log θpt(k)(t)− log θpt(k+1)(t)

)]2
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The Increasing Concentration of U.S. Banking Assets

Banking Assets in the U.S.

Growing concentration of U.S. banking assets starting in the 1990s

Fernholz and Koch (2016a): Why are Big Banks Getting Bigger?

I Estimate volatilities and reversion rates using U.S. banking assets data

I Stationary distribution for banking assets described by:

asset concentration =
idiosyncratic asset volatilities

reversion rates of assets

By estimating volatilities and reversion rates, can determine why, in

an econometric sense, big banks got bigger
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The Increasing Concentration of U.S. Banking Assets

The Changing U.S. Bank Size Distribution
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Figure: The share of total assets held by the largest U.S. bank-holding companies.
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The Increasing Concentration of U.S. Banking Assets

Idiosyncratic Volatilities
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Figure: Standard deviations of idiosyncratic asset volatilities (σk) for different

ranked bank-holding companies.

Ricardo Fernholz (CMC) Empirical Methods for Power Laws March 17, 2017



Introduction Nonparametric Approach to Dynamic Power Law Distributions Applications Conclusion

The Increasing Concentration of U.S. Banking Assets

Reversion Rates
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Figure: Minus the reversion rates (αk) for different ranked bank-holding

companies.
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The Increasing Concentration of U.S. Banking Assets

Idiosyncratic Volatilities: Beyond Gibrat’s Law
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Figure: Standard deviations of idiosyncratic asset volatilities (σk) for different

ranked bank-holding companies.
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The Increasing Concentration of U.S. Banking Assets

Idiosyncratic Volatilities: Beyond Gibrat’s Law
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Figure: Standard deviations of idiosyncratic asset volatilities (σk) when imposing

Gibrat’s Law.
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The Increasing Concentration of U.S. Banking Assets

Prediction vs. Data: Beyond Gibrat’s Law
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Figure: Shares of total assets held by the 500 largest U.S. BHCs for 1986 Q2 -

1997 Q4 as compared to the predicted shares.
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The Increasing Concentration of U.S. Banking Assets

Prediction vs. Data: Beyond Gibrat’s Law
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Figure: Shares of total assets held by the 500 largest U.S. BHCs for 1998 Q1 -

2016 Q3 as compared to the predicted shares.
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The Increasing Concentration of U.S. Banking Assets

Prediction vs. Data: Beyond Gibrat’s Law
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Figure: Shares of total assets held by the 500 largest U.S. BHCs for 1998 Q1 -

2016 Q3 as compared to the predicted shares when imposing Gibrat’s Law.
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The Distribution of Relative Commodity Prices

Commodity Prices

Results can also be applied to distribution of relative commodity prices

I Instead of unit holdings by agents, let processes xi represent prices of

different commodities

I Normalize prices by equalizing them in initial period, this way they can

be compared in an economically meaningful way

Let x̃(k) be k-th most expensive commodity price relative to average

I Can show that log x̃(k)(t)− log x̃(k+1)(t) = log θ(k)(t)− log θ(k+1)(t), so

distributions of relative commodity prices and “price shares” are same

Estimate volatility and reversion rates using commodity prices data

I Monthly data for 22 common commodities obtained from FRED
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The Distribution of Relative Commodity Prices

Relative Commodity Prices
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Figure: Commodity prices relative to the average, 1980 - 2015.
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The Distribution of Relative Commodity Prices

Relative Commodity Prices by Rank
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Figure: Commodity prices by rank relative to the average, 1980 - 2015.
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The Distribution of Relative Commodity Prices

Confidence Intervals and Parameter Smoothing

Smooth estimated parameters αk and σk across ranks using a

Gaussian kernal smoother

I Choose number of smoothings that minimizes the squared deviation

between prediction and data

Underlying distribution of parameters αk and σk is unknown

Bootstrap resampling generates confidence intervals

I 10,000 replicate samples randomly generated with replacement

I Samples consist of T − 1 pairs of adjacent monthly prices

I Confidence intervals based on range of estimates in these resamples
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The Distribution of Relative Commodity Prices

Reversion Rates
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Figure: Point estimates and 95% confidence intervals of minus the reversion rates

(αk) for different ranked commodities, 1980 - 2015.
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The Distribution of Relative Commodity Prices

Idiosyncratic Volatilities
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Figure: Point estimates and 95% confidence intervals of idiosyncratic commodity

price volatilities (σk) for different ranked commodities, 1980 - 2015.

Ricardo Fernholz (CMC) Empirical Methods for Power Laws March 17, 2017



Introduction Nonparametric Approach to Dynamic Power Law Distributions Applications Conclusion

The Distribution of Relative Commodity Prices

Prediction vs. Data
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Figure: Relative commodity prices for different ranked commodities for 1981 -

2015 as compared to the predicted relative prices.
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The Rank Effect for Commodities

Cross-Sectional Mean Reversion Condition

Theorem

There is a stationary distribution of relative commodity prices if and only if

α1 + · · ·+ αk < 0, for k = 1, . . . ,N − 1. Furthermore, if there is a

stationary distribution, then for k = 1, . . . ,N − 1, this distribution satisfies

E
[
log θ∗(k)(t)− log θ∗(k+1)(t)

]
=

σ2
k

−4(α1 + · · ·+ αk)
.

The top k most expensive commodity prices must on average grow

more slowly than the bottom N − k commodity prices

I Otherwise, commodity price distribution is asymptotically degenerate

This is a testable prediction of these econometric methods
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The Rank Effect for Commodities

Rank Cutoff k Average Difference Standard Deviation t-Statistic

1 -1.46% 9.34% -3.24

2 -1.69% 7.06% -4.96

3 -1.42% 5.89% -4.98

4 -1.49% 4.98% -6.19

5 -1.28% 4.57% -5.80

6 -1.14% 4.20% -5.62

7 -1.05% 3.93% -5.51

8 -0.87% 3.72% -4.83

9 -0.75% 3.45% -4.47

10 -0.68% 3.45% -4.07

11 -0.64% 3.40% -3.89

12 -0.61% 3.37% -3.73

13 -0.62% 3.29% -3.90

14 -0.59% 3.37% -3.59

15 -0.52% 3.41% -3.17

16 -0.47% 3.53% -2.77

17 -0.45% 3.82% -2.41

18 -0.36% 3.80% -1.98

19 -0.47% 4.22% -2.32

20 -0.53% 4.87% -2.23

21 -0.88% 7.16% -2.55

Table: Difference between monthly log growth rates for top k ranked commodities

minus bottom N − k ranked commodities from 1980 - 2015.
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Rank-Based Forecasts of Future Commodity Prices

Local-time-based estimation procedure yields a simple equation for

rank-based forecasts of future commodity prices:

Et

[
d log

(
x̃pt(1)(t) + · · ·+ x̃pt(k)(t)

)]
=

−
x̃(k)(t)

2(x̃(1)(t) + · · ·+ x̃(k)(t))
Et

[
dΛlog x̃(k)−log x̃(k+1)

(t)
]

Use estimates of dΛlog x̃(k)−log x̃(k+1)
to forecast change in top k relative

commodity prices out of sample

1. Estimate dΛlog x̃(k)−log x̃(k+1)
using fixed window (first 10 years)

2. Estimate dΛlog x̃(k)−log x̃(k+1)
using rolling window (all previous months)
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Local Time Processes
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Figure: Local time processes for different ranked commodities, 1980 - 2015.
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Rank Cutoff k Fixed Estimation of κk Rolling Estimation of κk

1 0.988 0.988

2 0.972 0.973

3 0.971 0.972

4 0.958 0.959

5 0.963 0.963

6 0.964 0.964

7 0.966 0.965

8 0.982 0.978

9 0.993 0.989

10 0.990 0.986

11 0.983 0.980

12 0.986 0.983

13 0.981 0.978

14 0.989 0.987

15 0.990 0.988

16 0.987 0.985

17 0.990 0.988

18 0.996 0.992

19 0.994 0.990

20 0.994 0.991

21 0.990 0.987

Table: RMSE ratios of one-month-ahead out-of-sample forecasts of log price of

top k ranked commodities relative to price of all N commodities for 1990 - 2015.
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Cross-Sectional Mean Reversion in Commodity Futures
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Figure: Commodity futures prices relative to the average, 2010 - 2016.
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The Rank Effect

Mean-reversion condition implies there is a rank effect for

commodities (Fernholz and Koch, 2016b)

I Higher-priced, higher-ranked commodities should grow more slowly

(lower returns) than lower-priced, lower-ranked commodities

I “Value” for commodities (Asness, Moskowitz, and Pedersen, 2013)

Test for the rank effect using commodity futures data for 2010 - 2016

I Portfolios are rebalanced every day and place equal weight on each

commodity that goes into the portfolio

I Prices are normalized to all equal each other on first day, then wait 20

days before forming portfolios so that rank has meaning
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Returns: Low-Rank vs. High-Rank Commodities
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Figure: Log returns for low- and high-ranked commodities portfolios, 2010 - 2016.
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Relative Returns: Low-Rank vs. High-Rank Commodities
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Figure: Log returns of low-rank commodities portfolio relative to high-rank

commodities portfolio, 2010 - 2016.
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Relative Returns: Low-Rank vs. High-Rank Commodities

Lower-priced, lower-ranked commodities portfolio (bottom quintile)

consistently outperforms higher-priced, higher-ranked commodities

portfolio (top quintile)

I Average yearly excess return of 23.2%

I Sharpe ratio almost twice Russell 3000

I Correlation with Russell 3000 returns (beta) of 0.10

I Results are similar for other low-minus-high portfolio sorts such as

median or decile
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Equities, Bonds, and the Rank Effect
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Figure: Log returns for rank effect, stocks, and bonds, 2010 - 2016.
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A Structural Rank Effect?

Rank effect doesn’t appear to be driven by excess risk

I Little apparent correlation between low-minus-high rank effect for

commodities and U.S. equity returns or U.S. business cycle

I Standard asset pricing theories predict correlation between

low-minus-high rank effect and some discount factor (Lucas, 1978)

Econometric theory predicts only a rank effect, but says nothing

about the risk properties of that rank effect

I Difficult to see how actions of investors can alter prices in a way that

eliminates the rank effect

I This points to a systematic relationship between rank and risk
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Extensions and Applications

Empirical methods for dynamic power law distributions

I Methods can be applied to many different power law distributions

I Nonparametric techniques are flexible and robust

Other applications

I Wealth and income: Fernholz (2016, 2017)

I Firm size: Smaller firms generate faster employment growth

I Historical commodity prices: 250 years of predictability?

I World income distribution: Are we converging, and if so, to what?

I City size: Similar to Gabaix (1999), but with more flexibility
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Thank You
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