Exchange Rate Manipulation and Constructive Ambiguity

Ricardo Fernholz

Claremont McKenna College

July 23, 2014

Ricardo Fernholz (CMC)

Constructive Ambiguity

э.

・ 同 ト ・ ヨ ト ・ ヨ ト

Motivation

Transparency or Opacity?

- Relevant question for many aspects of economic policymaking
 - Focus on central bank foreign exchange interventions
- Prevalence of exchange rate interventions
 - Calvo and Reinhart (2002)
 - Japan in September 2010
- Disagreement about the desirability of transparency in practice
 - Size and timing of interventions
 - Desired movements of the exchange rate
 - Monetary and other policies
 - Different approaches, different justifications
 - Canales-Kriljenko (2003), Chiu (2003), BIS (2005)

Motivation

Mexico, Russia, and the Financial Crisis

- Bank of Mexico
 - Longtime commitment to transparent intervention
 - ► In February 2009, an abrupt switch to a deliberately secretive policy
- Bank of Russia
 - Many small changes to the target band for the ruble
 - Predictable and extensive interventions at the margin
 - In late January 2009, a large adjustment to the band and a switch to a looser and more ambiguous intervention policy
- What is the meaning of these different policies?

Key Elements of the Benchmark Model and Extensions

- Heterogeneous information
 - Investors observe private signals of interventions and fundamentals
- Publicly observable exchange rate
 - ▶ Rational Bayesian investors combine public and private information
 - Grossman and Stiglitz (1976)
- Noise traders
 - Misalignment between fundamentals and the exchange rate
 - Imperfect learning
 - Extension 1: Policy as a signal of fundamentals
 - Extension 2: Infinite horizon, higher-order beliefs

Key Elements of the Benchmark Model and Extensions

- Heterogeneous information
 - Investors observe private signals of interventions and fundamentals
- Publicly observable exchange rate
 - Rational Bayesian investors combine public and private information
 - Grossman and Stiglitz (1976)
- Noise traders
 - Misalignment between fundamentals and the exchange rate
 - Imperfect learning
 - Extension 1: Policy as a signal of fundamentals
 - Extension 2: Infinite horizon, higher-order beliefs

Transparency

- Compare transparent policy with ambiguous policy
 - Either CB announces its intervention or remains silent
- An announcement has two distinct effects on the beliefs of investors:
 - The truth-telling effect, which reduces currency mispricing
 - The signal-precision effect, which magnifies currency mispricing
- Under certain circumstances, the signal-precision effect is larger
 - Transparency can exacerbate existing misalignment between the exchange rate and fundamentals
 - How much information can the central bank credibly reveal?

Truth-Telling and Signal-Precision Effects

- A foreign exchange intervention is a source of:
 - Information about fundamentals
 - 2 Noise in the exchange rate
- If an intervention is revealed to investors, this has two effects:
 - Information is revealed (the truth-telling effect)
 - One of the exchange rate is reduced (the signal-precision effect)
- Less noise \implies more weight on exchange rate signal in expectations
 - Magnifies misalignment of beliefs and also the exchange rate
- Partial information revelation is crucial
 - Mussa (1981), Dominguez and Frankel (1993)

3

(日) (周) (三) (三)

Truth-Telling and Signal-Precision Effects

- A foreign exchange intervention is a source of:
 - Information about fundamentals
 - 2 Noise in the exchange rate
- If an intervention is revealed to investors, this has two effects:
 - Information is revealed (the truth-telling effect)
 - One of the exchange rate is reduced (the signal-precision effect)
- Less noise \implies more weight on exchange rate signal in expectations
 - Magnifies misalignment of beliefs and also the exchange rate
- Partial information revelation is crucial
 - Mussa (1981), Dominguez and Frankel (1993)

3

Exchange Rate Misalignment and Information Revelation

Exchange Rate Misalignment and Information Revelation

Introduction

- Motivation
- Preview of Results
- 2 Benchmark Two-Period Model
 - Setup
 - Equilibrium
 - Transparency
- Olicy as a Signal of Fundamentals
 - Infinite-Horizon Model
 - 5 Conclusion

A⊒ ▶ ∢ ∃

э

Benchmark: Basics

- Two periods, $t \in \{1, 2\}$
- Two countries, home (dollar) and foreign (peso)
- One consumption good, price is linked by LOP: $e_t + p_t^* = p_t$
 - \triangleright p_t and p_t^* are log prices in the home and foreign countries, respectively
 - \triangleright e_t is the log dollar price of one peso
- Three assets are traded (all payoffs are in period two):
 - Nominal dollar bond with return i_1
 - 2 Nominal peso bond with return i_1^*
 - 3 Risk-free technology with real return r

3

イロト イポト イヨト イヨト

More Basics

• Let
$$p_1 = p_2 = 0$$
 and $i_1 = i_1^* = r$

• Excess real return on peso bonds then equals peso appreciation:

$$-p_2^* - e_1 + i_1^* - i_1 = e_2 - e_1$$

- The exchange rate in period two is given by $e_2 = f + \kappa$
 - $f \in \mathbb{R}$ is exchange rate fundamentals
 - * Infinite-horizon extension: interest rate spreads, risk premia
 - ★ Future intervention policies
 - $\kappa \sim N(0, \sigma_{\kappa}^2)$ is a shock to the exchange rate

3

(日) (周) (三) (三)

More Basics

• Let
$$p_1 = p_2 = 0$$
 and $i_1 = i_1^* = r$

• Excess real return on peso bonds then equals peso appreciation:

$$-p_2^* - e_1 + i_1^* - i_1 = e_2 - e_1$$

- The exchange rate in period two is given by $e_2 = f + \kappa$
 - $f \in \mathbb{R}$ is exchange rate fundamentals
 - * Infinite-horizon extension: interest rate spreads, risk premia
 - ★ Future intervention policies
 - $\kappa \sim N(0, \sigma_{\kappa}^2)$ is a shock to the exchange rate

3

- 4 同 6 4 日 6 4 日 6

Investors

- Continuum of investors $i \in [0, 1]$
- Each investor is endowed with real wealth $w_{i1} > 0$ in period one
- Investors have CARA preferences over consumption in period two:

$$\max_{b_{i1} \in \mathbb{R}} - E_{i1} \left[e^{-\gamma c_{i2}} \right], \quad \text{s. t. } c_{i2} = (1+i_1)w_{i1} + (e_2 - e_1)b_{i1}$$

If e_2 is normally distributed, then the demand for peso bonds by investor i is given by

$$b_{i1} = \frac{E_{i1}[e_2] - e_1}{\gamma \operatorname{Var}_{i1}[e_2]}$$

3

Foreign Exchange Intervention

- The foreign central bank purchases $\nu \in \mathbb{R}$ dollars of peso bonds
- Exchange rate fundamentals contain two parts: ٠

 $f = \theta_f f_0 + \theta_u f_u$

- f₀ is unrelated to intervention
- f_{ν} is related to intervention: CB's intervention ν is a function of f_{ν}
- $\theta_f, \theta_{\nu} > 0$ measure the relative importance of each part
 - ***** High θ_f , low $\theta_{\nu} \implies$ little connection between interv. and fund.
 - ***** Low θ_f , high $\theta_{\nu} \implies$ large connection between interv. and fund.

イロト 不得 トイヨト イヨト 二日

Interventions and Fundamentals

- Recall that $f = \theta_f f_0 + \theta_\nu f_\nu$, where ν is a function of f_ν
- What does θ_{ν} capture?
 - Correlation between fundamentals and interventions.
 - ★ Bhattacharya and Weller (1997), Vitale (1999)
 - Signal of future policies, direct effect on risk premium
- To simplify, suppose that $\nu = f_{\nu}$, so that $f = \theta_f f_0 + \theta_{\nu} \nu$
- Transparency: foreign central bank announces the value of ν
 - Public, credible, truthful

3

(日) (周) (三) (三)

Interventions and Fundamentals

- Recall that $f = \theta_f f_0 + \theta_\nu f_\nu$, where ν is a function of f_ν
- What does θ_{μ} capture?
 - Correlation between fundamentals and interventions.
 - ★ Bhattacharya and Weller (1997), Vitale (1999)
 - Signal of future policies, direct effect on risk premium
- To simplify, suppose that $\nu = f_{\nu}$, so that $f = \theta_f f_0 + \theta_{\nu} \nu$
- Transparency: foreign central bank announces the value of ν
 - Public, credible, truthful
 - \bullet θ_{ν} measures the extent of information revelation

3

(日) (周) (三) (三)

Public and Private Information

• Each investor *i* observes two private signals:

•
$$x_i = f_0 + \epsilon_i$$
, where $\epsilon_i \sim N(0, \sigma_{\epsilon}^2)$

•
$$y_i = \nu + \eta_i$$
, where $\eta_i \sim N(0, \sigma_{\eta}^2)$

- All investors also observe the exchange rate
 - Rational expectations equilibrium: ex rate is signal of fundamentals f
 - Noise traders purchase $\xi \sim N(0, \sigma_{\varepsilon}^2)$ dollars worth of peso bonds
 - Creates misalignment, prevents full revelation
- If CB announces the value of ν , then this is common knowledge

The Equilibrium Exchange Rate

In equilibrium, the exchange rate in period one is given by

- If CB announces the value of ν , write $\tilde{e}_1 = f + \gamma \tilde{\sigma}^2 \nu + \tilde{\lambda} \xi$
- σ^2 is the conditional variance of e_2
- $\bullet\,$ The goal is to compare the terms $\tilde{\lambda}$ and λ
 - Exchange rate misalignment
 - Price informativeness

イロト 不得 トイヨト イヨト 二日

What Determines λ ?

Market clearing implies that

$$\frac{\overline{E}_1[e_2] - e_1}{\gamma \sigma^2} + \nu + \xi = 0$$

• Because $e_2 = f + \kappa$, it follows that $\overline{E}_1[e_2] = \overline{E}_1[f]$ and hence

$$e_{1} = \overline{E}_{1}[f] + \gamma \sigma^{2} \nu + \gamma \sigma^{2} \xi$$
$$= f + \gamma \sigma^{2} \nu + \lambda \xi$$

- The goal is to evaluate $\overline{E}_1[f]$ and $\gamma \sigma^2$
 - Noise traders: altered demand, biased expectations
 - How much weight do expectations place on ξ ?

э

(日) (同) (三) (三)

What Determines λ ?

Market clearing implies that

$$\frac{\overline{E}_1[e_2] - e_1}{\gamma \sigma^2} + \nu + \xi = 0$$

• Because $e_2 = f + \kappa$, it follows that $\overline{E}_1[e_2] = \overline{E}_1[f]$ and hence

$$e_{1} = \overline{E}_{1}[f] + \gamma \sigma^{2} \nu + \gamma \sigma^{2} \xi$$
$$= f + \gamma \sigma^{2} \nu + \lambda \xi$$

- The goal is to evaluate $\overline{E}_1[f]$ and $\gamma \sigma^2$
 - Noise traders: altered demand, biased expectations
 - How much weight do expectations place on ξ ?

Expectations and Information

- How is $\overline{E}_1[f]$ evaluated?
- Recall that $f = \theta_f f_0 + \theta_\nu \nu$ and $e_1 = f + \gamma \sigma^2 \nu + \lambda \xi$
- Bayesian inference yields

$$E_{i1}[f] = \theta_f x_i + \theta_\nu y_i + \frac{\operatorname{Cov}_i[f, e_1]}{\operatorname{Var}_i[e_1]}(e_1 - E_i[e_1])$$
$$\implies \overline{E}_1[f] = f + \frac{\operatorname{Cov}_i[f, e_1]}{\operatorname{Var}_i[e_1]}\lambda\xi$$

• What happens when CB makes an announcement?

- Learn ν and hence part of $f \implies \text{Cov}_i[f, e_1] \downarrow (\text{truth-telling effect})$
- Less noise in $e_1 \implies Var_i[e_1] \downarrow (signal-precision effect)$

3

イロト イポト イヨト イヨト

Expectations and Information

- How is $\overline{E}_1[f]$ evaluated?
- Recall that $f = \theta_f f_0 + \theta_\nu \nu$ and $e_1 = f + \gamma \sigma^2 \nu + \lambda \xi$
- Bayesian inference yields

$$E_{i1}[f] = \theta_f x_i + \theta_\nu y_i + \frac{\operatorname{Cov}_i[f, e_1]}{\operatorname{Var}_i[e_1]}(e_1 - E_i[e_1])$$
$$\implies \overline{E}_1[f] = f + \frac{\operatorname{Cov}_i[f, e_1]}{\operatorname{Var}_i[e_1]}\lambda\xi$$

- What happens when CB makes an announcement?
 - Learn ν and hence part of $f \implies \text{Cov}_i[f, e_1] \downarrow (\text{truth-telling effect})$
 - Less noise in $e_1 \implies Var_i[e_1] \downarrow (signal-precision effect)$

3

(日) (周) (三) (三)

Theorem (Transparency Theorem)

There exists a unique threshold $\hat{\theta}_{\nu}$ such that $\tilde{\lambda} > \lambda$ if and only if $\theta_{\nu} < \hat{\theta}_{\nu}$. If information revelation is sufficiently partial, then transparency magnifies exchange rate misalignment.

- Fundamentals: $f = \theta_f f_0 + \theta_{\nu} \nu$
 - \bullet θ_{ν} measures the information content of CB intervention
- Exchange rate: $e_1 = f + \gamma \sigma^2 \nu + \lambda \xi$
 - λ and $\tilde{\lambda}$ measure exchange rate misalignment (for a given ξ)
 - If $\tilde{\lambda} > \lambda$, transparency \implies more misalignment
- Two important special cases:

 - 2 $\theta_f = 0$: Intervention fully reveals fundamentals, and $\tilde{\lambda} < \lambda$

3

Transparency

Theorem (Transparency Theorem)

There exists a unique threshold $\hat{\theta}_{\nu}$ such that $\tilde{\lambda} > \lambda$ if and only if $\theta_{\nu} < \hat{\theta}_{\nu}$. If information revelation is sufficiently partial, then transparency magnifies exchange rate misalignment.

- Fundamentals: $f = \theta_f f_0 + \theta_{\nu} \nu$
 - \bullet θ_{ν} measures the information content of CB intervention
- Exchange rate: $e_1 = f + \gamma \sigma^2 \nu + \lambda \xi$
 - λ and $\tilde{\lambda}$ measure exchange rate misalignment (for a given ξ)
 - If $\tilde{\lambda} > \lambda$, transparency \implies more misalignment
- Two important special cases:
 - $\theta_{\nu} = 0$: Intervention reveals nothing about fundamentals, and $\lambda > \lambda$
 - 2 $\theta_f = 0$: Intervention fully reveals fundamentals, and $\tilde{\lambda} < \lambda$

3

イロト イポト イヨト イヨト

Transparency and Information Revelation

($\sigma_{\epsilon}=$ 0.35, $\sigma_{\eta}=$ 0.35, $\sigma_{\xi}=$ 0.12, $\sigma_{\kappa}=$ 0.10, $\gamma=$ 5, $heta_{f}=$ 2)

Less Unpredictability from Noise Traders

Figure: The value of λ (dashed line) and $\tilde{\lambda}$ (solid line) as θ_{ν} increases. $(\sigma_{\epsilon} = 0.35, \sigma_{\eta} = 0.35, \sigma_{\xi} = 0.10, \sigma_{\kappa} = 0.10, \gamma = 5, \theta_{f} = 2)$

Less Unpredictability from Noise Traders

Figure: The value of λ (dashed line) and $\tilde{\lambda}$ (solid line) as θ_{ν} increases. $(\sigma_{\epsilon} = 0.35, \sigma_{\eta} = 0.35, \sigma_{\xi} = 0.10, \sigma_{\kappa} = 0.10, \gamma = 5, \theta_{f} = 2)$

Less of Fundamentals Unrelated to Interventions

Figure: The value of λ (dashed line) and $\tilde{\lambda}$ (solid line) as θ_{ν} increases. ($\sigma_{\epsilon} = 0.35$, $\sigma_{\eta} = 0.35$, $\sigma_{\xi} = 0.10$, $\sigma_{\kappa} = 0.10$, $\gamma = 5$, $\theta_{f} = 1.6$)

The Benchmark Model in the Real World

- Transparency can in fact magnify exchange rate misalignment
 - How much information can the central bank credibly reveal?
 - When is the exchange rate misaligned?
- Mexico, Russia, and the Financial Crisis
 - Rapid currency depreciation, eventually some recovery
 - Difficult to calm markets via public announcements
 - Ambiguous, unpredictable intervention policies likely better
- Partial transparency < No transparency < Full transparency
- Setup is general and can be applied to other settings
 - Bond and Goldstein (2010)

Introduction

- Motivation
- Preview of Results

2 Benchmark Two-Period Model

- Setup
- Equilibrium
- Transparency

Olicy as a Signal of Fundamentals

Infinite-Horizon Model

5 Conclusion

э

< 回 > < 三 > < 三 >

Signalling: Motivation

- The benchmark model implicitly assumes that investors are naive
 - Tractable
 - Misses a piece of reality
- Central bank's choice of transparency policy is actually strategic
- Rational investors are aware of this strategic element
 - CB policy yields information about state of the economy
- What happens to the model's predictions?
 - Bayesian signalling game: pooling vs. separating equilibria

Signalling: Basics

- Benchmark setup, but central bank's policy choice is now a signal
- The bank's objective is to increase the peso exchange rate
 - Defense against a falling exchange rate
 - The bank knows all of fundamentals, but this could be relaxed
- Partially-separating Bayesian equilibrium
 - CB has two actions, chooses both depending on misalignment
 - Matches the analysis from the benchmark model
 - Truth-telling and signal-precision effects determine equilibrium actions

(日) (周) (三) (三)

Partially-Separating Bayesian Equilibrium

Theorem

Given a set of assumptions for the model's primitives, there exists a partially-separating Bayesian equilibrium in which the foreign central bank announces the size of its intervention if and only if $\xi \geq \hat{\xi}(\nu)$.

- If the exchange rate is undervalued, transparency is not desirable
- In this setting, a central bank announcement has two effects:
 - The expectation of fundamentals decreases
 - The variance of fundamentals decreases
- Some central banks will benefit more from the lower variance

Introduction

- Motivation
- Preview of Results

2 Benchmark Two-Period Model

- Setup
- Equilibrium
- Transparency
- Olicy as a Signal of Fundamentals
- Infinite-Horizon Model

5 Conclusion

э

< 回 > < 三 > < 三 >

Infinite-Horizon: Basics

- Time is discreet and indexed by t
- One consumption good (price is linked by LOP) and three assets
- Domestic interest rate policy: $i_t = r$ and $p_t = 0$ for all t
- Foreign interest rate and intervention policy:

•
$$i_t^* = ap_t^* + f_t + r$$
, where $a > 0$ is the response to price deviations
• $f_t = \rho_f f_{t-1} + \zeta_t$, where $0 < \rho_f < 1$ and $\zeta_t \sim N(0, \sigma_{\zeta}^2)$
• $\nu_t = \rho_{\nu} \nu_{t-1} + \delta_t$, where $0 < \rho_{\nu} < 1$ and $\delta_t \sim N(0, \sigma_{\delta}^2)$

• Investors publicly learn the value of ν_{t-1} in period t

(日) (周) (三) (三)

Common Knowledge: Connection to Benchmark Model

• As in the two-period model, equilibrium exchange rate is of the form

 $e_t = \text{fundamentals} + \text{risk premium} + \lambda \xi_t$

• λ and $\tilde{\lambda}$ again measure exchange rate misalignment (for a given ξ_t)

• Compare e_2 from the two-period model with e_{t+1} from this model:

$$e_2 = \theta_f f_0 + \theta_{\nu} \nu + \kappa$$
 vs. $e_{t+1} = \frac{\psi_f}{\alpha} f_{t+1} + \rho_{\nu} \psi_{\nu} \nu_t + \text{noise}$

- ρ_{ν} measures the persistence of central bank interventions
- $\blacktriangleright \ \psi_{\nu}$ measures time-discounted changes in the risk premium
- λ should be increasing relative to $\tilde{\lambda}$ as ρ_{ν} grows from zero to one

イロト イポト イヨト イヨト

Common Knowledge: Connection to Benchmark Model

• As in the two-period model, equilibrium exchange rate is of the form

 $e_t = \text{fundamentals} + \text{risk premium} + \lambda \xi_t$

- λ and $\tilde{\lambda}$ again measure exchange rate misalignment (for a given ξ_t)
- Compare e_2 from the two-period model with e_{t+1} from this model:

$$e_2 = \theta_f f_0 + \theta_\nu \nu + \kappa$$
 vs. $e_{t+1} = \frac{\psi_f}{\alpha} f_{t+1} + \rho_\nu \psi_\nu \nu_t$ + noise

- ρ_{ν} measures the persistence of central bank interventions
- $\psi_{
 u}$ measures time-discounted changes in the risk premium
- λ should be increasing relative to $\tilde{\lambda}$ as ρ_{ν} grows from zero to one

(日) (周) (三) (三)

Transparency and Persistence

Figure: The value of λ (dashed line) and $\tilde{\lambda}$ (solid line) as ρ_{ν} increases. ($\sigma_{\epsilon} = 0.35$, $\sigma_{\eta} = 0.35$, $\sigma_{\xi} = 0.12$, $\sigma_{\zeta} = 0.035$, $\sigma_{\delta} = 0.07$, $\gamma = 5$, $\rho_{f} = 0.7$)

Less Unpredictability from Noise Traders

Figure: The value of λ (dashed line) and $\tilde{\lambda}$ (solid line) as ρ_{ν} increases. ($\sigma_{\epsilon} = 0.35$, $\sigma_{\eta} = 0.35$, $\sigma_{\xi} = 0.10$, $\sigma_{\zeta} = 0.035$, $\sigma_{\delta} = 0.07$, $\gamma = 5$, $\rho_{f} = 0.7$)

Less Unpredictability from Noise Traders

Less Persistent Shocks to Interest Rates

Imperfect Common Knowledge of the Past

- Investors do not learn the value of ν_{t-1} in period t
- Peso bond interest rate is $i_t^* = ap_t^* + f_t + \chi_t + r$, with $\chi_t \sim N(0, \sigma_{\chi}^2)$
 - Imperfect common knowledge about the value of f_t
- Higher-order expectations are part of the equilibrium exchange rate
 - Bacchetta and van Wincoop (2006), Lorenzoni (2009)
 - ► Townsend (1983), Kasa, Walker, and Whiteman (2007)
- Nimark (2010) presents a technique for approximating such models
 - Bound the order of agents' expectations
 - No need to exogenously assume common knowledge of the past

イロト イポト イヨト イヨト

Imperfect Common Knowledge of the Past

- Investors do not learn the value of ν_{t-1} in period t
- Peso bond interest rate is $i_t^* = ap_t^* + f_t + \chi_t + r$, with $\chi_t \sim N(0, \sigma_{\chi}^2)$
 - Imperfect common knowledge about the value of f_t
- Higher-order expectations are part of the equilibrium exchange rate
 - Bacchetta and van Wincoop (2006), Lorenzoni (2009)
 - ► Townsend (1983), Kasa, Walker, and Whiteman (2007)
- Nimark (2010) presents a technique for approximating such models
 - Bound the order of agents' expectations
 - No need to exogenously assume common knowledge of the past

イロト イポト イヨト イヨト

Persistent Misalignment and Transparency

• The technique involves solving for a system of equations of the form

$$e_t = AQ_t + \alpha \gamma \sigma^2 \xi_t,$$
$$Q_t = MQ_{t-1} + Nw_t$$

- Q_t is a vector of higher-order expectations of f_t and ν_t
- w_t is a vector of disturbances $(\zeta_t, \delta_t, \chi_t, \xi_t)$
- Transitory noise trades permanently affect investors' expectations
- Persistent misalignment often magnified by transparency, much like the benchmark two-period model

(日) (周) (三) (三)

Persistent Misalignment and Transparency

• The technique involves solving for a system of equations of the form

$$e_t = AQ_t + \alpha\gamma\sigma^2\xi_t,$$

 $Q_t = MQ_{t-1} + Nw_t$

- Q_t is a vector of higher-order expectations of f_t and ν_t
- w_t is a vector of disturbances $(\zeta_t, \delta_t, \chi_t, \xi_t)$
- Transitory noise trades permanently affect investors' expectations
- Persistent misalignment often magnified by transparency, much like the benchmark two-period model

Introduction

- Motivation
- Preview of Results

2 Benchmark Two-Period Model

- Setup
- Equilibrium
- Transparency
- Olicy as a Signal of Fundamentals
 - Infinite-Horizon Model

5 Conclusion

3

< 回 > < 三 > < 三 >

Summary

- Heterogeneous information is key in benchmark model and extensions
 - Exchange rate is a source of others' information
 - Noise traders prevent full revelation
- In this setting, there are two distinct effects of transparency:
 - The truth-telling effect
 - $\star\,$ Full information revelation $\,\Longrightarrow\,$ truth-telling effect is largest
 - 2 The signal-precision effect
 - \star Partial information revelation \implies signal-precision effect is largest
- Partial transparency is worse than no transparency, while full transparency is best

(日) (周) (三) (三)

Implications

- How much information can the central bank credibly reveal?
- When is the exchange rate misaligned?
- CB intervention during periods of crisis and large capital outflows
 - Asymmetric information, pro-cyclical liquidity provision, psychology
 - * Brunnermeier and Pedersen (2009), Shleifer and Vishny (1997)
 - Excessive sales of risky assets, undervalued currencies
 - Ambiguity, unpredictability can increase intervention's effectiveness
 - Prevent the spread of pessimism, preserve some credibility
- Extensions
 - General price manipulation
 - Competitive devaluation, specific intervention policies

The End

Thank You

Ricardo Fernholz (CMC)

Constructive Ambiguity

July 23, 2014

3

<ロ> (日) (日) (日) (日) (日)

Assumptions

- **(**) There is a positive net supply of peso bonds denoted by S > 0
- ② The central bank's intervention u is bounded, so that $|
 u| \le \overline{
 u} < S$
 - Ensures a positive net supply of peso bonds
 - Ensures a positive risk premium on peso bonds
 - Transparency reduces uncertainty and also risk premium
- **③** Investors' common prior for ν is uniform over the interval $[-\bar{\nu}, \bar{\nu}]$
 - Technical assumption, keeps expectations tractable

(日) (周) (三) (三)

Partially-Separating Bayesian Equilibrium

Theorem

There exist bounds $\hat{S}, \hat{\nu}, \hat{\sigma}_{\xi} > 0$ such that if $S \ge \hat{S}, \ \bar{\nu} \ge \hat{\nu}$, and $\sigma_{\xi} \le \hat{\sigma}_{\xi}$, then there exists a partially-separating Bayesian equilibrium in which the foreign central bank announces the size of its intervention if and only if $\xi \ge \hat{\xi}(\nu)$. In this equilibrium, the threshold function $\hat{\xi}(\nu)$ is positive and decreasing in ν .

- If the exchange rate is undervalued, transparency is not desirable
- In this setting, a central bank announcement has two effects:
 - The expectation of fundamentals decreases
 - The variance of fundamentals decreases
- Some central banks will benefit more from the lower variance

< 4 ► >

900

What About Pooling Equilibria?

• The exchange rate in period one is approximately of the form

$$e_1 = \overline{E}_1[f] + \gamma \sigma^2(\nu + \xi)$$

- In this case, strange and unintuitive out-of-equilibrium beliefs are necessary to construct pooling equilibria
 - ► One possibility is that *E*₁[*f*] is not finite either with or without a central bank announcement

• Another possibility is that
$$\sigma^2 = \tilde{\sigma}^2$$

3

- 4 週 ト - 4 三 ト - 4 三 ト

- Investors' interpretation of CB policy might dictate its meaning
 - Interpret no transparency as bad sign, force CB to always announce
 - Interpret transparency as bad sign, force CB to never announce
- Forget about two parts of fundamentals, suppose that

$$\tilde{e}_1 = f + \tilde{\lambda}(\xi - \hat{\xi})$$

• Investors observe an announcement, so they learn that $\xi \geq \hat{\xi} > 0$

• This is equivalent to learning that $f \leq \tilde{e}_1$, which implies that

$$\lim_{\sigma_{\xi}\to 0} \overline{E}_1 \exp\{-f\} = \lim_{\sigma_{\xi}\to 0} \exp\{-\tilde{e}_1\}$$
$$= \lim_{\sigma_{\xi}\to 0} \exp\{-f - \tilde{\lambda}(\xi - \hat{\xi})\}.$$

(日) (同) (三) (三)

- Investors' interpretation of CB policy might dictate its meaning
 - Interpret no transparency as bad sign, force CB to always announce
 - Interpret transparency as bad sign, force CB to never announce
- Forget about two parts of fundamentals, suppose that

$$ilde{e}_1 = f + ilde{\lambda}(\xi - \hat{\xi})$$

• Investors observe an announcement, so they learn that $\xi \geq \hat{\xi} > 0$

• This is equivalent to learning that $f \leq \tilde{e}_1$, which implies that

$$\lim_{\sigma_{\xi}\to 0} \overline{E}_1 \exp\{-f\} = \lim_{\sigma_{\xi}\to 0} \exp\{-\tilde{e}_1\}$$
$$= \lim_{\sigma_{\xi}\to 0} \exp\{-f - \tilde{\lambda}(\xi - \hat{\xi})\}.$$

- 4 週 ト - 4 三 ト - 4 三 ト

• It follows that e_1 is normally distributed in the limit:

$$\lim_{\sigma_{\xi}\to 0} \tilde{e}_1 = \lim_{\sigma_{\xi}\to 0} f + \tilde{\lambda}(\xi - \hat{\xi}).$$

• In a similar manner, it can be shown that

$$\lim_{\sigma_{\xi}\to 0} e_1 = \lim_{\sigma_{\xi}\to 0} f + \lambda \xi.$$

• For σ_{ξ} small, the difference between e_1 and \tilde{e}_1 is approximately

$$e_1 - \tilde{e}_1 = \xi(\lambda - \tilde{\lambda}) + \tilde{\lambda}\hat{\xi}$$

• $\tilde{\lambda} > \lambda \implies$ no equilibria where CB makes an announcement iff $\xi < \hat{\xi}$

• It follows that e_1 is normally distributed in the limit:

$$\lim_{\sigma_{\xi} o 0} ilde{e}_1 = \lim_{\sigma_{\xi} o 0} f + ilde{\lambda}(\xi - \hat{\xi}).$$

• In a similar manner, it can be shown that

$$\lim_{\sigma_{\xi}\to 0} e_1 = \lim_{\sigma_{\xi}\to 0} f + \lambda\xi.$$

• For σ_{ξ} small, the difference between e_1 and \tilde{e}_1 is approximately

$$e_1 - \tilde{e}_1 = \xi(\lambda - \tilde{\lambda}) + \tilde{\lambda}\hat{\xi}$$

• $\tilde{\lambda} > \lambda \implies$ no equilibria where CB makes an announcement iff $\xi < \hat{\xi}$

Proof Sketch: Truncation of Higher-Order Expectations 1

• The technique involves solving for a system of equations of the form

$$e_t = AQ_t(k) + lpha \gamma \sigma^2 \xi_t,$$

 $Q_t(k) = MQ_{t-1}(k) + Nw_t$

• Higher-order expectations are truncated at k, so that

$$q_{jt} = \left(\overline{E}_t \cdots \overline{E}_t[f_t] \quad \overline{E}_t \cdots \overline{E}_t[\nu_t]\right)',$$

with the expectation repeated $0 \leq j \leq k$ times, and

$$Q_t(k) = \begin{pmatrix} q'_{0t} & q'_{1t} & \cdots & q'_{kt} \end{pmatrix}',$$
$$w_t = \begin{pmatrix} \sigma_{\zeta}^{-1} \zeta_t & \sigma_{\delta}^{-1} \delta_t & \sigma_{\chi}^{-1} \chi_t & \sigma_{\xi}^{-1} \xi_t \end{pmatrix}'$$

• The goal is to solve for the matrices M and N and the vector A

Ricardo Fernholz (CMC)

१९९

Proof Sketch: Truncation of Higher-Order Expectations 2

• In each period *t*, each investor *i* observes

$$z_{it} = \begin{pmatrix} x_{it} \\ y_{it} \\ \bar{i}_t \\ e_t \end{pmatrix} = DQ_t(k) + R \begin{pmatrix} \sigma_{\epsilon}^{-1} \epsilon_{it} \\ \sigma_{\eta}^{-1} \eta_{it} \\ \sigma_{\zeta}^{-1} \zeta_t \\ \sigma_{\delta}^{-1} \delta_t \\ \sigma_{\chi}^{-1} \chi_t \\ \sigma_{\xi}^{-1} \xi_t \end{pmatrix},$$

where
$$\overline{i}_t = i_t^* - ap_t^* - r = f_t + \chi_t$$
 and $R = \begin{pmatrix} R_1 & R_2 \end{pmatrix}$

• If K is the Kalman gain matrix, then Bayesian updating implies that

$$E_{it}[Q_t(k)] = ME_{it-1}[Q_{t-1}(k)] + K(z_{it} - DME_{it-1}[Q_{t-1}(k)])$$

200

Proof Sketch: Truncation of Higher-Order Expectations 3

• Averaging over all investors yields

$$\overline{E}_t[Q_t(k)] = K \left(DMQ_{t-1}(k) + (DN + R_2)w_t - DM\overline{E}_{t-1}[Q_{t-1}(k)] \right) + M\overline{E}_{t-1}[Q_{t-1}(k)] = KDMQ_{t-1}(k) + K(DN + R_2)w_t + (M - KDM)\overline{E}_{t-1}[Q_{t-1}(k)]$$

• The Kalman gain matrix K is given by

$$K = (PD' + NR'_2)(DPD' + RR')^{-1},$$

where P satisfies the matrix Riccati equation

$$P = M \left(P - (PD' + NR'_2)(DPD' + RR')^{-1}(PD' + NR'_2)' \right) M' + NN'$$

- < ∃ →

Persistent Misalignment and Transparency

Figure: The response of the exchange rate to a shock to the noise traders' demand for peso bonds ξ_t in period t_0 . ($\sigma_{\epsilon} = 0.35$, $\sigma_{\eta} = 0.35$, $\sigma_{\xi} = 0.1$, $\sigma_{\zeta} = 0.03$, $\sigma_{\delta} = 0.07$, $\sigma_{\chi} = 0.005$, $\alpha = 0.92$, $\gamma = 5$, $\rho_f = 0.7$, $\rho_{\nu} = 0.1$, k = 50)

Ricardo Fernholz (CMC)

Summary

- Heterogeneous information is key in benchmark model and extensions
 - Exchange rate is a source of others' information
 - Noise traders prevent full revelation
- In this setting, there are two distinct effects of transparency:
 - The truth-telling effect
 - $\star\,$ Full information revelation $\,\Longrightarrow\,$ truth-telling effect is largest
 - 2 The signal-precision effect
 - \star Partial information revelation \implies signal-precision effect is largest
- Partial transparency is worse than no transparency, while full transparency is best

(日) (周) (三) (三)

Implications

- How much information can the central bank credibly reveal?
- When is the exchange rate misaligned?
- CB intervention during periods of crisis and large capital outflows
 - Asymmetric information, pro-cyclical liquidity provision, psychology
 - * Brunnermeier and Pedersen (2009), Shleifer and Vishny (1997)
 - Excessive sales of risky assets, undervalued currencies
 - Ambiguity, unpredictability can increase intervention's effectiveness
 - Prevent the spread of pessimism, preserve some credibility
- Extensions
 - General price manipulation
 - Competitive devaluation, specific intervention policies

The End

Thank You

Ricardo Fernholz (CMC)

Constructive Ambiguity

July 23, 2014

3

<ロ> (日) (日) (日) (日) (日)