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Abstract

This paper introduces nonparametric econometric methods that characterize gen-

eral power law distributions under basic stability conditions. These methods extend

the literature on power laws in the social sciences in several directions. First, we show

that any stationary distribution in a random growth setting is shaped entirely by two

factors—the idiosyncratic volatilities and reversion rates (a measure of cross-sectional

mean reversion) for different ranks in the distribution. This result is valid regard-

less of how growth rates and volatilities vary across different economic agents, and

hence applies to Gibrat’s law and its extensions. Second, we present techniques to

estimate these two factors using panel data. Third, we describe how our results im-

ply predictability as higher-ranked processes must on average grow more slowly than

lower-ranked processes. We employ our empirical methods using data on commodity

prices and show that our techniques accurately describe the empirical distribution of

relative commodity prices. We also show that rank-based out-of-sample forecasts of

future commodity prices outperform random-walk forecasts at a one-month horizon.
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1 Introduction

Power laws are ubiquitous in economics, finance, and the social sciences more broadly. They

are found across many different phenomena, ranging from the distribution of income and

wealth (Atkinson et al., 2011; Piketty, 2014) to the city size distribution (Gabaix, 1999) to

the distribution of assets of financial intermediaries (Janicki and Prescott, 2006; Fernholz

and Koch, 2016). Although a number of potential mechanisms explaining the appearance of

power laws have been proposed (Newman, 2005; Gabaix, 2009), one of the most broad and

influential involves random growth processes.

A large literature in economics, both theoretical and empirical, models different power

laws and Pareto distributions as the result of random growth processes that are stabilized by

the presence of some friction (Champernowne, 1953; Gabaix, 1999; Luttmer, 2007; Benhabib

et al., 2011). In this paper, we present rank-based, nonparametric methods that allow for

the characterization of general power law distributions in any continuous random growth

setting. These techniques, which are well-established and the subject of active research in

statistics and mathematical finance, are general and can be applied to Gibrat’s law and many

of its extensions in economics and finance.1 According to our general characterization, any

stationary distribution in a random growth setting is shaped entirely by two factors—the

idiosyncratic volatilities and reversion rates (a measure of cross-sectional mean reversion)

for different ranks in the distribution. An increase in idiosyncratic volatilities increases

concentration, while an increase in reversion rates decreases concentration. We also present

results that allow for the estimation of these two factors using panel data.

Our characterization of a stationary distribution in a general, nonparametric setting

provides a framework in which we can understand the shaping forces for almost all power law

distributions that emerge in random growth settings. After all, one implication of our results

is that the distributional effect of any economic mechanism can be inferred by determining

the effect of that mechanism on the idiosyncratic volatilities and reversion rates for different

ranked processes. In addition to our general characterization, this is, to our knowledge, the

first paper in economics to provide empirical methods to measure the econometric factors

that shape power law distributions using panel data.

These empirical methods allow us to understand the causes, in an econometric sense, of

1There is a growing and extensive literature analyzing these rank-based methods. See, for example,
Banner et al. (2005), Pal and Pitman (2008), Ichiba et al. (2011), and Shkolnikov (2011).
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distributional changes that occur for power laws in economics and finance. This econometric

analysis has many potential applications. For example, our methods can establish that

increasing U.S. income and wealth inequality (Atkinson et al., 2011; Saez and Zucman,

2016) is the result of changes in either reversion rates or the magnitude of idiosyncratic

shocks to household income and wealth. These econometric changes could then be linked to

the evolution of policy, skill-biased technological change, or other changes in the economic

environment. This is the approach of Fernholz and Koch (2016), who analyze the increasing

concentration of U.S. bank assets using the econometric techniques presented in this paper.

A similar analysis of increasing U.S. house price dispersion (Van Nieuwerburgh and Weill,

2010) should also yield new conclusions and useful insight.

One of this paper’s main contributions is to present a new and more general approach

to power laws in economics and finance. Indeed, the most common approach to modeling

random growth processes and power laws involves solving a single stochastic differential equa-

tion that yields a parametric distribution representing a continuum of agents, an approach

that started with Gabaix (1999). In contrast, our approach considers a discrete system of

multiple stochastic differential equations in which no parametric assumptions are imposed.

This generality is useful for many applications, since empirical distributions often do not

conform to a single power law at all points (Axtell, 2001; Ioannides and Skouras, 2013).

Our general characterization of the stationary distribution in a random growth setting

imposes a piecewise linear relationship between log size and log rank—a power law distribu-

tion in which the power law exponent can change at every rank. We show that the power

law exponent varies across ranks in the same way as the reversion rates and idiosyncratic

volatilities of the underlying random growth process vary across ranks. By varying these

two shaping factors across ranks, then, our methods can replicate any empirical distribution,

including those which do not conform to a single power law at all points. To our knowledge,

this is the first paper in economics to achieve such generality.

In order to demonstrate the validity and accuracy of our empirical methods, we estimate

reversion rates and idiosyncratic volatilities using monthly commodity prices data from 1980

- 2015 and compare the predicted distribution of relative commodity prices using our meth-

ods to the average distribution of relative commodity prices observed during this period.

Although our methods apply most naturally to distributions such as wealth, firm size, and

city size, they can also be applied to the distributions of relative asset prices. By testing our
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methods using normalized commodity prices data, we are able to examine the applicability

of these methods to relative asset price distributions.

Commodity prices must be normalized so that they can be compared in an economi-

cally meaningful way, but as long as these appropriately-normalized prices satisfy the basic

regularity conditions that our econometric theory relies on, then our methods should be

applicable to the distribution of relative commodity prices. Furthermore, because the dis-

tribution of relative normalized commodity prices appears to be stationary during the 1980

- 2015 period, the rank-based reversion rates and idiosyncratic volatilities that we estimate

should provide an accurate description of the observed relative commodity price distribution

during this period. We confirm that this is in fact the case. One of the contributions of this

paper, then, is to show that our empirical methods can validly be applied not only to stan-

dard size distributions but also to relative asset price distributions. This result highlights

the potential for future applications of our econometric techniques using other data sets.

In addition to our characterization of a stationary distribution in a general random growth

setting, we also show that a cross-sectional mean-reversion condition is necessary for the

existence of such a stationary distribution. Specifically, a stationary distribution exists only

if the growth rates of higher-ranked processes are on average lower than the growth rates

of lower-ranked processes. This condition offers a testable prediction of our econometric

theory. Specifically, commodity price rank should forecast future commodity prices. We

confirm that this is in fact the case in two different ways. First, we show that the log growth

rates of all subsets of higher-ranked commodities are lower than the log growth rates of

lower-ranked commodities and that these differences are highly statistically significant over

the 1980 - 2015 time period. Second, we use our econometric results to generate out-of-

sample forecasts of one-month-ahead commodity prices from 1990 - 2015, and show that

these rank-based forecasts outperform random-walk forecasts in all cases. In many cases,

these rank-based forecasts outperform random-walk forecasts by more than forecasts based

on factor models or commodity price fundamentals (Alquist and Coibion, 2014; West and

Wong, 2014).

The rest of this paper is organized as follows. Section 2 presents our nonparametric

framework and derives the main result that characterizes general stationary power law dis-

tributions. Section 3 presents results that show how to estimate the two shaping factors

of a power law distribution using panel data. Section 4 presents estimates of rank-based
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reversion rates and idiosyncratic volatilities using commodity prices data, and also examines

rank-based forecasts of future commodity prices derived from our econometric results. Sec-

tion 5 concludes. Appendix A investigates the efficiency of local-time-based reversion-rate

estimators, Appendix B discusses the regularity assumptions needed for our main results,

and Appendix C contains all proofs.

2 A Nonparametric Approach to Dynamic Power Law

Distributions

For consistency, we shall refer to agents holding units throughout this section. However, it

is important to note that in this general setup agents can represent households, firms, cities,

countries, and other entities, with the corresponding units representing income, wealth, total

employees, population, and other quantities. Furthermore, we can also interpret agents’

holdings of units as the prices of different assets, as we shall do for commodity prices in

Section 4 below.

Consider a population that consists of N > 1 agents. Time is continuous and denoted by

t ∈ [ 0,∞), and uncertainty in this population is represented by a filtered probability space

(Ω,F ,Ft, P ). Let B(t) = (B1(t), . . . , BM(t)), t ∈ [0,∞), be an M -dimensional Brownian

motion defined on the probability space, with M ≥ N . We assume that all stochastic

processes are adapted to {Ft; t ∈ [0,∞)}, the augmented filtration generated by B.2

2.1 Dynamics

The total units held by each agent i = 1, . . . , N is given by the process xi. Each of these

unit processes evolves according to the stochastic differential equation

d log xi(t) = µi(t) dt+ δi(t) · dB(t), (2.1)

where µi and δi = (δi1, . . . , δiM) are measurable and adapted processes. The growth rates and

volatilities, µi and δi, respectively, are general and practically unrestricted, having only to

satisfy a few basic regularity conditions that are discussed in Appendix B. These conditions

2In order to simplify the exposition, we shall omit many of the less important regularity conditions and
technical details involved with continuous-time stochastic processes.
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imply that the unit processes for the agents are Itô processes, which represent a broad class of

stochastic processes that are common in the continuous-time finance literature (for a detailed

discussion, see Karatzas and Shreve, 1991).

Indeed, the martingale representation theorem (Nielsen, 1999) implies that any plausible

continuous process for agents’ unit holdings can be written in the nonparametric form of

equation (2.1).3 The M ≥ N sources of volatility in this equation allow for a rich structure

of time-varying idiosyncratic, correlated, and aggregate shocks to agents’ unit holdings that

need not conform to any particular distribution. Furthermore, equation (2.1) also allows for

unit growth rates and volatilities that vary across individual agents based on any character-

istics. The generality of this nonparametric framework implies that our econometric results

are consistent with essentially any underlying economic model, including models based on

Gibrat’s law or specific extensions to Gibrat’s law (Gabaix, 1999, 2009).

It is useful to describe the dynamics of the total units held by all agents, which we denote

by x(t) = x1(t) + · · ·+ xN(t). In order to do so, we first characterize the covariance of unit

holdings across different agents over time. For all i, j = 1, . . . , N , let the covariance process

ρij be given by

ρij(t) = δi(t) · δj(t). (2.2)

Applying Itô’s Lemma to equation (2.1), we are now able to describe the dynamics of the

total units process x.

Lemma 2.1. The dynamics of the process for total units held by all agents x are given by

d log x(t) = µ(t) dt+
N∑
i=1

θi(t)δi(t) · dB(t), a.s., (2.3)

where

θi(t) =
xi(t)

x(t)
, (2.4)

for i = 1, . . . , N , and

µ(t) =
N∑
i=1

θi(t)µi(t) +
1

2

(
N∑
i=1

θi(t)ρii(t)−
N∑

i,j=1

θi(t)θj(t)ρij(t)

)
. (2.5)

3Many of this section’s results can also apply to processes that are subject to sporadic, discontinuous
jumps. This is an open area for research, with such extensions examined by Shkolnikov (2011) and Fernholz
(2016a).
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2.2 Rank-Based Dynamics

In order to characterize the stationary distribution of units in this setup, it is necessary

to consider the dynamics of agents’ unit holdings by rank. One of the key insights of our

approach and of this paper more generally is that rank-based unit dynamics are the essential

determinants of the distribution of units. As we demonstrate below, there is a simple, direct,

and robust relationship between rank-based unit growth rates and the distribution of units.

This relationship is a purely statistical result and hence can be applied to essentially any

economic environment, no matter how complex.

The first step in achieving this characterization is to introduce notation for agent rank

based on unit holdings. For k = 1, . . . , N , let

x(k)(t) = max
1≤i1<···<ik≤N

min (xi1(t), . . . , xik(t)) , (2.6)

so that x(k)(t) represents the units held by the agent with the k-th most units among all

the agents in the population at time t. For brevity, we shall refer to this agent as the k-th

largest agent throughout this paper. One consequence of this definition is that

max(x1(t), . . . , xN(t)) = x(1)(t) ≥ x(2)(t) ≥ · · · ≥ x(N)(t) = min(x1, . . . , xN(t)). (2.7)

Next, let θ(k)(t) be the share of total units held by the k-th largest agent at time t, so that

θ(k)(t) =
x(k)(t)

x(t)
, (2.8)

for k = 1, . . . , N .

One of this paper’s central contributions is to provide a characterization of the asymptotic

behavior of the unit shares held by every single ranked agent θ(k). This characterization in

fact describes the entire distribution of agents’ unit holdings. To see this, note that the

statement that the agent with the k-th largest unit holdings holds θ(k) units is equivalent to

the statement that k agents hold more than θ(k) units. Of course, this latter statement yields

the probability of observing unit holdings greater than θ(k), which implies that the unit shares

θ(k) describe the cumulative distribution function (CDF) of the distribution of unit holdings.

In other words, if we can describe the asymptotic behavior of each θ(k), k = 1, . . . , N , then

we can also describe the asymptotic distribution of agents’ unit holdings in full.
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The next step in our approach is to describe the dynamics of the agent rank unit processes

x(k) and rank unit share processes θ(k), k = 1, . . . , N . This task is complicated by the fact

that the max and min functions from equation (2.6) are not differentiable, and hence we

cannot simply apply Itô’s Lemma in this case. Instead, we introduce the notion of a local

time to solve this problem. For any continuous process z, the local time at 0 for z is the

process Λz defined by

Λz(t) =
1

2

(
|z(t)| − |z(0)| −

∫ t

0

sgn(z(s)) dz(s)

)
. (2.9)

As detailed by Karatzas and Shreve (1991), the local time for z measures the amount of time

the process z spends near zero and can also be defined as

Λz(t) = lim
ε↓0

1

2ε

∫ t

0

1{|z(s)|<ε} ds. (2.10)

To be able to link agent rank to agent index, let pt be the random permutation of {1, . . . , N}
such that for 1 ≤ i, k ≤ N ,

pt(k) = i if x(k)(t) = xi(t). (2.11)

This definition implies that pt(k) = i whenever agent i is the k-th largest agent in the

population at time t, with ties broken in some consistent manner.4

Lemma 2.2. For all k = 1, . . . , N , the dynamics of the agent rank unit processes x(k) and

rank unit share processes θ(k) are given by5

d log x(k)(t) = d log xpt(k)(t) +
1

2
dΛlog x(k)−log x(k+1)

(t)− 1

2
dΛlog x(k−1)−log x(k)(t), (2.12)

a.s, and

d log θ(k)(t) = d log θpt(k)(t) +
1

2
dΛlog θ(k)−log θ(k+1)

(t)− 1

2
dΛlog θ(k−1)−log θ(k)(t), (2.13)

a.s., with the convention that Λlog x(0)−log x(1)(t) = Λlog x(N)−log x(N+1)
(t) = 0.

4For example, if xi(t) = xj(t) and i > j, then we can set pt(k) = i and pt(k + 1) = j.
5For brevity, we write dzpt(k)(t) to refer to the process

∑N
i=1 1{i=pt(k)}dzi(t) throughout this paper.
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According to equation (2.12) from the lemma, the dynamics of units for the k-th largest

agent in the population are the same as those for the agent that is the k-th largest at time

t (agent i = pt(k)), plus two local time processes that capture changes in agent rank (one

agent overtakes another in unit holdings) over time. Equation (2.13) describes the similar

dynamics of the rank unit share processes θ(k).

Using equations (2.1) and (2.3) and the definition of θi(t), we have that for all i =

1, . . . , N ,

d log θi(t) = d log xi(t)− d log x(t)

= µi(t) dt+ δi(t) · dB(t)− µ(t) dt−
N∑
i=1

θi(t)δi(t) · dB(t). (2.14)

If we apply Lemma 2.2 to equation (2.14), then it follows that

d log θ(k)(t) =
(
µpt(k)(t)− µ(t)

)
dt+ δpt(k)(t) · dB(t)−

N∑
i=1

θi(t)δi(t) · dB(t)

+
1

2
dΛlog θ(k)−log θ(k+1)

(t)− 1

2
dΛlog θ(k−1)−log θ(k)(t),

(2.15)

a.s, for all k = 1, . . . , N . Equation (2.15), in turn, implies that the process log θ(k)− log θ(k+1)

satisfies, a.s., for all k = 1, . . . , N − 1,

d
(
log θ(k)(t)− log θ(k+1)(t)

)
=
(
µpt(k)(t)− µpt(k+1)(t)

)
dt+ dΛlog θ(k)−log θ(k+1)

(t)

− 1

2
dΛlog θ(k−1)−log θ(k)(t)−

1

2
dΛlog θ(k+1)−log θ(k+2)

(t)

+
(
δpt(k)(t)− δpt(k+1)(t)

)
· dB(t).

(2.16)

The processes for relative unit holdings of adjacent agents in the distribution of units as

given by equation (2.16) are key to describing the distribution of units in this setup.

2.3 Stationary Distribution

The results presented above allow us to analytically characterize the stationary distribution

of units in this setup. Let αk equal the time-averaged limit of the expected growth rate of

units for the k-th largest agent relative to the expected growth rate of units for the entire
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population of agents, so that

αk = lim
T→∞

1

T

∫ T

0

(
µpt(k)(t)− µ(t)

)
dt, (2.17)

for k = 1, . . . , N . The relative growth rates αk are a rough measure of the rate at which

agents’ unit holdings cross-sectionally revert to the mean. We shall refer to the −αk as

reversion rates, since lower values of αk (and hence higher values of −αk) imply faster cross-

sectional mean reversion.

In a similar manner, we wish to define the time-averaged limit of the volatility of the

process log θ(k) − log θ(k+1), which measures the relative unit holdings of adjacent agents in

the distribution of units. For all k = 1, . . . , N − 1, let σk be given by

σ2
k = lim

T→∞

1

T

∫ T

0

∥∥δpt(k)(t)− δpt(k+1)(t)
∥∥2 dt. (2.18)

The relative growth rates αk together with the volatilities σk entirely determine the shape

of the stationary distribution of units in this population, as we shall demonstrate below.

We shall refer to the volatility parameters σk, which measure the standard deviations of

the processes log θ(k) − log θ(k+1), as idiosyncratic volatilities. An idiosyncratic shock to the

unit holdings of either the k-th or (k+1)-th ranked agent alters the value of log θ(k)−log θ(k+1)

and hence will be measured by σk. In addition, however, a shock that affects the unit holdings

of multiple agents that do not occupy adjacent ranks in the distribution will also alter this

value. Indeed, any shock that affects log θ(k) and log θ(k+1) differently, must necessarily alter

the value of log θ(k)− log θ(k+1) and hence will be measured by σk. In this sense, the volatility

parameters σk are slightly more general than pure idiosyncratic volatilities that capture only

shocks that affect one single agent at a time.

Finally, for all k = 1, . . . , N , let

κk = lim
T→∞

1

T
Λlog θ(k)−log θ(k+1)

(T ). (2.19)

Let κ0 = 0, as well. Throughout this paper, we assume that the limits in equations (2.17)-

(2.19) do in fact exist. In Appendix C, we show that the parameters αk and κk are related

by αk − αk+1 = 1
2
κk−1 − κk + 1

2
κk+1, for all k = 1, . . . , N − 1.

The stable version of the process log θ(k) − log θ(k+1) is the process log θ∗(k) − log θ∗(k+1)
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defined by

d
(
log θ∗(k)(t)− log θ∗(k+1)(t)

)
= −κk dt+ dΛlog θ∗

(k)
−log θ∗

(k+1)
(t) + σk dB(t), (2.20)

for all k = 1, . . . , N − 1.6 The stable version of log θ(k) − log θ(k+1) replaces all of the

processes from the right-hand side of equation (2.16) with their time-averaged limits, with

the exception of the local time process Λlog θ(k)−log θ(k+1)
. By considering the stable version of

these relative unit holdings processes, we are able to obtain a simple characterization of the

distribution of units.

Theorem 2.3. There is a stationary distribution for the stable version of unit holdings by

agents in this population if and only if α1 + · · ·+αk < 0, for k = 1, . . . , N − 1. Furthermore,

if there is a stationary distribution of units, then for k = 1, . . . , N − 1, this distribution

satisfies

E
[
log θ∗(k)(t)− log θ∗(k+1)(t)

]
=

σ2
k

−4(α1 + · · ·+ αk)
, a.s. (2.21)

Theorem 2.3 provides an analytic rank-by-rank characterization of the entire distribution

of units. This is achieved despite minimal assumptions on the processes that describe the

dynamics of agents’ unit holdings over time. As long as the relative growth rates, volatilities,

and local times that we take limits of in equations (2.17)-(2.19) do not change drastically and

frequently over time, then the distribution of the stable versions of θ(k) from Theorem 2.3 will

accurately reflect the distribution of the true versions of these rank unit share processes.7

The theorem yields a system of N − 1 equations which together with the identity θ(1) +

· · · + θ(N) = 1 can be solved for the unit shares held by every single ranked agent θ(k). As

discussed in Section 2.2 above, this description of each θ(k) is equivalent to a description

of the cumulative distribution function (CDF) of the distribution of unit holdings. One of

the most important implications of equation 2.21 from Theorem 2.3 is that the only two

econometric factors that affect the distribution of unit holdings are the rank-based reversion

rates, −αk, and the rank-based volatilities, σk. This implies that it is not necessary to

directly model and estimate agents’ unit holdings dynamics by name, denoted by index i, as

6For each k = 1, . . . , N − 1, equation (2.20) implicitly defines another Brownian motion B(t), t ∈ [0,∞).
These Brownian motions can covary in any way across different k.

7Fernholz (2002) and Fernholz and Koch (2016) demonstrate the accuracy of Theorem 2.3 in matching,
respectively, the distribution of total market capitalizations of U.S. stocks and the distribution of assets of
U.S. financial intermediaries.
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is the usual approach in economics.8 Instead, an understanding of unit holdings dynamics

by rank, denoted by k, is sufficient to describe the entire distribution of units.

2.4 Discussion: Power Laws, Gibrat’s Law, and Theorem 2.3

Our characterization of the distribution of agents’ unit holdings in Theorem 2.3 is different

from what is standard for power laws in economics and finance. Usually, a single stochastic

differential equation is solved and this solution yields a parametric distribution that repre-

sents a continuum of agents. This single-equation approach was introduced to economics

by Gabaix (1999), and has since been used in many applications (Luttmer, 2007; Benhabib

et al., 2011; Gabaix et al., 2016).

In contrast to this literature, our approach involves solving a discrete system of multiple

stochastic differential equations. This granularity is essential for real-world applications,

since there is never a continuum of agents in the data. Indeed, the practical importance of

this novel feature of our approach is apparent in Sections 3 and 4, where we first introduce

methods to estimate the rank-based reversion rates −αk and idiosyncratic volatilities σk

for each discrete rank k = 1, . . . , N − 1 using panel data, and then apply this estimation

procedure to commodity price data from 1980 - 2015. This procedure is more flexible than

the standard single-equation approach, and this flexibility allows for more precision when

describing the distribution of relative commodity prices from 1980 - 2015.

A second advantage of our approach is that it imposes no parametric assumptions about

the stationary distribution of agents’ unit holdings. Indeed, equation (2.21) from Theorem

2.3 is flexible enough to replicate any empirical distribution given appropriate values for the

reversion rates and volatilities. To see this, note that the distribution of agents’ unit holdings

follows a power law if the relationship between log-unit shares and log rank is linear, at least

for the highest ranks (Newman, 2005; Gabaix, 2009). According to equation (2.21) from

Theorem 2.3, for all k = 1, . . . , N − 1, the slope of a log-unit shares versus log rank plot is

given by

E
[
log θ∗(k)(t)− log θ∗(k+1)(t)

]
log(k)− log(k + 1)

≈ −(k + 0.5)σ2
k

−4(α1 + · · ·+ αk)
, (2.22)

8In the literatures on income and wealth inequality, for example, the standard approach is to model
the income or wealth dynamics of individual households rather than ranked households (Guvenen, 2009;
Benhabib et al., 2011; Altonji et al., 2013).
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where we use the asymptotic approximation log(k) − log(k + 1) ≈ −(k + 0.5)−1. Equation

(2.22) characterizes a power law distribution for unit shares in that it imposes piecewise

linearity—a different linear relationship between ranks 1 and 2, 2 and 3, and so on up to

ranks N − 1 and N . As the reversion rates −αk and idiosyncratic volatilities σk vary across

different ranks in the distribution, equation (2.22) shows that the slope of the log-unit shares

versus log rank plot varies correspondingly.

According to equation (2.22), then, our general methods allow for a power law relation-

ship that can vary across every single rank in the distribution of agents’ unit holdings. To

our knowledge, our approach is the first in economics or finance to achieve such generality.

As with granularity, this generality is essential for many applications, since many empirical

distributions do not uniformly conform to one single power law. There is ample evidence, for

example, that income and wealth distributions follow power laws at the top while appearing

more lognormal at lower levels of income and wealth (Guvenen, 2009; Atkinson et al., 2011;

Benhabib et al., 2011). The same basic pattern has been documented for city size distribu-

tions as well (Eeckhout, 2004; Ioannides and Skouras, 2013). Similarly, firm size distributions

usually follow power laws that vary across different parts of the distribution, regardless of

whether firm size is measured by total employees (Axtell, 2001; Luttmer, 2007), total mar-

ket capitalization (Fernholz, 2002), or total assets (Fernholz and Koch, 2016). The fact that

these real-world applications do not conform to a single distribution fits easily into our em-

pirical framework because of the flexibility and lack of parametric assumptions of Theorem

2.3. Indeed, equations (2.21) and (2.22) imply that these changing or partial power laws are

the result of reversion rates and idiosyncratic volatilities that vary correspondingly across

different ranks in the distribution.

Theorem 2.3 generalizes far beyond the equal growth rates and volatilities imposed by

Gibrat’s law (Gabaix, 2009). The strongest form of Gibrat’s law for unit holdings requires

growth rates and volatilities that do not vary across the distribution of unit holdings. In terms

of the reversion rates −αk (which measure relative unit growth rates for different ranked

agents) and idiosyncratic volatilities σk, this requirement is equivalent to there existing

some common α < 0 and σ > 0 such that

α = α1 = · · · = αN−1, (2.23)
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and

σ = σ1 = · · · = σN−1. (2.24)

In terms of equation (2.21) from Theorem 2.3, then, Gibrat’s law yields unit shares that

satisfy

E
[
log θ∗(k)(t)− log θ∗(k+1)(t)

]
log(k)− log(k + 1)

≈ −(k + 0.5)σ2
k

−4(α1 + · · ·+ αk)
=
−(k + 0.5)σ2

−4kα
=
σ2

4α
+

σ2

8kα
(2.25)

for all k = 1, . . . , N − 1.

The distribution of agents’ unit holdings follows a Pareto distribution if a log-unit shares

versus log rank plot appears as a straight line (Newman, 2005; Gabaix, 2009). Furthermore,

if the slope of such a straight line plot is -1, then agents’ unit shares obey Zipf’s law (Gabaix,

1999). Equation (2.25) shows that Gibrat’s law yields a Pareto distribution in which, for

large k, the log-log plot of unit shares versus rank has slope σ2/4α < 0, which is equivalent

to the Pareto distribution having parameter −4α/σ2 > 0. Furthermore, we see that agents’

unit shares obey Zipf’s law only if σ2 = −4α, in which case the log-log plot has slope −1,

for large k.

One interesting implication of Theorem 2.3 and equation (2.22) relates to a result of

Gabaix (1999) regarding deviations from Zipf’s law for cities. Gabaix (1999) uses a single-

equation approach to show that a process with higher volatility at lower city sizes produces

a stationary distribution in which the power law varies with size. In particular, he shows

that in this case a plot of log size versus log rank is steeper for smaller cities. We can see

that equation (2.22) confirms this result, since higher values of the volatility parameters σk

for large k (lower ranks) mean a steeper curve at the lower ranks. In other words, Theorem

2.3 implies that a negative relationship between unit shares and volatility yields a concave

log-log plot of unit shares versus rank.

Theorem 2.3 also extends this result of Gabaix (1999) in several directions. First, we

see that it is not only idiosyncratic volatilities σk that are increasing in k that generates

a concave log-log plot of unit shares versus rank, but also reversion rates −αk that are

decreasing in k. Indeed, according to equation (2.22), the slope of each linear piece of such

a log-log plot is increasing in σk and decreasing in −(α1 + · · ·+ αk)/k. Second, because we

adopt a nonparametric approach using general Itô processes in equation (2.1), our results

in Theorem 2.3 and equation (2.22) provide both necessary and sufficient conditions for any
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power law exponent to obtain in any part of the distribution curve. In other words, not only

do our results confirm the result of Gabaix (1999) regarding volatility and city size, but they

also show that the only two factors that can alter the power law exponent of the stationary

distribution of continuous random growth processes are the rank-based reversion rates −αk
and volatility parameters σk.

Perhaps most importantly, the precise definitions of the parameters αk and σk in equa-

tions (2.17) and (2.18) econometrically define the growth rates and volatilities that shape a

dynamic power law distribution. Equation (2.18) shows that the time-averaged volatilities of

the processes log θ(k) − log θ(k+1), k = 1, . . . , N − 1, are the volatility parameters that shape

the distribution of agents’ unit holdings. As mentioned above, these volatility parameters

σk do measure idiosyncratic shocks to agents’ unit holdings as in Gabaix (1999), but they

also measure correlated shocks that alter the relative unit holdings of adjacent ranked agents

log θ(k)− log θ(k+1). Similarly, equation (2.17) provides a precise econometric definition of the

growth rates that shape the distribution of agents’ unit holdings. According to this equation,

these growth rate parameters αk measure the log growth rates of unit holdings for each rank

k relative to the log growth rate of all units in the economy—a measure of cross-sectional

mean reversion. To our knowledge, these are new results in economics.

Theorem 2.3 demonstrates that Gibrat’s law and the Pareto distributions it generates

are special cases of more general processes in which growth rates and volatilities potentially

vary across different ranks in the distribution of unit holdings. This flexibility is a novel

feature of our empirical methodology and is necessary to accurately match many empiri-

cal distributions. For example, Fernholz and Koch (2016) find that asset growth rates and

volatilities vary substantially across different size-ranked U.S. financial intermediaries. Sim-

ilarly, Fernholz (2002) finds that growth rates and volatilities of total market capitalization

vary substantially across different size-ranked U.S. stocks, while Neumark et al. (2011) find

that employment growth rates vary across different size-ranked U.S. firms. In Section 4, we

confirm this general pattern and show that the growth rates of commodity prices also differ

across ranks in a statistically significant and economically meaningful way.

According to Theorem 2.3, stationarity of the distribution of agents’ unit holdings requires

that the reversion rates −αk must sum to positive quantities, for all k = 1, . . . , N − 1.

Stability, then, requires a cross-sectional mean-reversion condition in the sense that the

growth rates of units for the agents with the most units in the population must be strictly
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below the growth rates of units for agents with smaller unit holdings. This condition is

different from standard mean-reversion conditions that are imposed on a single stochastic

process for stationarity. Indeed, our results in this paper do not require that the individual

unit holdings processes for different agents xi mean-revert or are stationary. Instead, our

results require only that agents’ unit holdings grow at different rates depending on their ranks

in the distribution, regardless of the underlying stationarity properties of these individual

processes. As we shall demonstrate in Section 4, this condition has significant implications

for the dynamics of different ranked commodity prices.

The unstable case in which the cross-sectional mean-reversion condition of Theorem 2.3

does not hold is examined in detail by Fernholz and Fernholz (2014) and Fernholz (2016b).

These authors show that this case generates unbounded concentration of units and divergence

in the sense that asymptotically over time one agent comes to hold practically all the units in

the economy (the time-averaged limit of θ(1) is equal to one). This is an important insight that

can only be observed using a discrete system of multiple stochastic differential equations. In

the single-equation approach, this result is usually stated as the non-stationarity and infinite

variance of an integrated process with no “frictions” present (Gibrat, 1931; Champernowne,

1953; Gabaix, 2009).9 Of course, the statement that a single process is non-stationary

and has an infinite variance is difficult to interpret meaningfully in empirical applications.

In contrast, using our multiple-equation approach, we can derive the more general and

empirically meaningful result that in the absence of cross-sectional mean-reversion as defined

in Theorem 2.3, units will grow increasingly concentrated in the hands of one single agent

over time.

3 Estimation

One of the contributions of this paper is to provide techniques to estimate the shaping econo-

metric factors αk and σk using panel data. In this section, we describe how to accomplish

this efficiently using the local time processes defined and discussed in Section 2.

In order to estimate the reversion rates and volatilities from equation (2.21) from Theorem

2.3, we use discrete-time approximations of the continuous processes that yield the theorem.

9These “frictions” can take several forms including birth/death of processes, a reflecting barrier at some
lower bound for unit values, or some positive shock that is regularly added to each agent’s unit holdings over
time. See Gabaix (2009) for an extensive discussion.
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For the estimation of the volatility parameters σ2
k, we use the discrete-time approximation

of equation (2.18) above. In particular, these estimators are given by

σ̂2
k =

1

T − 1

T−1∑
t=1

[(
log θpt(k)(t+ 1)− log θpt(k+1)(t+ 1)

)
−
(
log θpt(k)(t)− log θpt(k+1)(t)

)]2
,

(3.1)

for all k = 1, . . . , N − 1. Note that T is the total number of periods covered in the data.

The estimation of the rank-based relative growth rates αk is more difficult. In order to

estimate these parameters, we first estimate the local time parameters κk and then exploit

the relationship that exists between these local times and the rank-based relative growth

rates.

Lemma 3.1. The relative growth rate parameters αk and the local time parameters κk satisfy

αk =
1

2
κk−1 −

1

2
κk, (3.2)

for all k = 1, . . . , N − 1, and αN = −(α1 + · · ·+ αN−1).

Lemma 3.2. The ranked agent unit share processes θ(k) satisfy the stochastic differential

equation

d log
(
θpt(1)(t) + · · ·+ θpt(k)(t)

)
= d log

(
θ(1)(t) + · · ·+ θ(k)(t)

)
−

θ(k)(t)

2(θ(1)(t) + · · ·+ θ(k)(t))
dΛlog θ(k)−log θ(k+1)

(t), a.s.,

(3.3)

for all k = 1, . . . , N .

These lemmas together allow us to generate estimates of the rank-based relative growth

rates αk. In order to accomplish this, we first estimate the local time processes Λlog θ∗
(k)
−log θ∗

(k+1)

using the discrete-time approximation of equation (3.3). This discrete-time approximation

implies that for all k = 1, . . . , N ,

log
(
θpt(1)(t+ 1) + · · ·+ θpt(k)(t+ 1)

)
− log

(
θpt(1)(t) + · · ·+ θpt(k)(t)

)
≈

log
(
θpt+1(1)(t+ 1) + · · ·+ θpt+1(k)(t+ 1)

)
− log

(
θpt(1)(t) + · · ·+ θpt(k)(t)

)
−

θpt(k)(t)

2
(
θpt(1)(t) + · · ·+ θpt(k)(t)

) (Λlog θ(k)−log θ(k+1)
(t+ 1)− Λlog θ(k)−log θ(k+1)

(t)
)
,

(3.4)
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which, after simplification and rearrangement, yields the local time estimators

Λ̂log θ(k)−log θ(k+1)
(t+ 1)− Λ̂log θ(k)−log θ(k+1)

(t) =

[
log
(
θpt+1(1)(t+ 1) + · · ·+ θpt+1(k)(t+ 1)

)
− log

(
θpt(1)(t+ 1) + · · ·+ θpt(k)(t+ 1)

) ]2
(
θpt(1)(t) + · · ·+ θpt(k)(t)

)
θpt(k)(t)

.

(3.5)

As with our estimates of the volatility parameters σ2
k, we estimate the values of the local

times in equation (3.5) for t = 1, . . . , T − 1, where T is the total number of periods covered

in the data. We also set Λ̂log θ(k)−log θ(k+1)
(0) = 0, for all k = 1, . . . , N .

Equation (3.5) states that the change in the local time estimator Λ̂log θ(k)−log θ(k+1)
is in-

creasing in the difference between the time t+ 1 unit holdings of the largest k agents at time

t+1 and the time t+1 unit holdings of the largest k agents at time t, a nonnegative number.

Of course, this difference measures the intensity of cross-sectional mean reversion, since a

large difference implies that the k agents with the largest unit holdings at time t have seen

their units grow substantially slower than some other subset of agents that had smaller unit

holdings at time t and are now themselves the agents with the largest unit holdings in the

economy.

After estimating the local times in equation (3.5), we then use equation (2.19) to generate

estimates of κk according to

κ̂k =
1

T
Λ̂log θ(k)−log θ(k+1)

(T ), (3.6)

for all k = 1, . . . , N . Finally, we can use the relationship between the parameters αk and κk

established by Lemma 3.1 to define the estimator

α̂k =
1

2
κ̂k−1 −

1

2
κ̂k, (3.7)

for all k = 1, . . . , N − 1. In Appendix A, we investigate the efficiency of this estimator.

While the methods described in this section explain how to generate point estimates of

the reversion rates −αk and idiosyncratic volatilities σk, it is important to also understand

how much variation there is in these estimates. It is not possible to generate confidence

intervals using classical techniques in this setting because the empirical distribution of the

parameters αk and σk is unknown. However, it is possible to use bootstrap resampling to
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generate confidence intervals for these estimated factors.

Equations (3.1) and (3.5) show that the reversion rates −αk and idiosyncratic volatilities

σk are measured as changes from one period, t, to the next, t + 1. As a consequence,

the bootstrap resamples we construct consist of T − 1 pairs of observations of agents’ unit

holdings from adjacent time periods (periods t and t + 1). Such resamples, of course, are

equivalent to the full sample which has observations over T periods and hence consists of

T−1 pairs of observations from adjacent periods. The confidence intervals are then generated

by determining the range of values that obtain for the parameters αk and σk over all of the

bootstrap resamples. In Section 4, we apply our techniques to the distribution of relative

commodity prices and generate confidence intervals for our estimates of the reversion rates

−αk and idiosyncratic volatilities σk following this procedure.

4 Application: The Distribution of Commodity Prices

We wish to confirm the validity and accuracy of the empirical methods we presented in

Section 2. We do this using a publicly available data set on the global monthly spot prices

of 22 common commodities for 1980 - 2015 obtained from the Federal Reserve Bank of St.

Louis (FRED).10

In order to accomplish this, we shall use the results and procedure described in Section

3 to estimate rank-based reversion rates, −αk, and idiosyncratic volatilities, σk, for the

distribution of relative commodity prices over our sample period 1980 - 2015. In this section,

then, we shall interpret agents’ holdings of units xi(t) from equation (2.1) as the prices of

different commodities. Because commodities are sold in different units and hence their prices

cannot be compared in an economically meaningful way, it is important to normalize these

prices by equalizing them in the initial period.

As long as the distribution of relative commodity prices is approximately stationary, then

Theorem 2.3 should accurately describe this distribution. This is true regardless of whether

commodity price formation is modeled using a simple CES-utility approach or a richer frame-

work that includes production and commodity-specific technology shocks as in Alquist and

Coibion (2014). Indeed, any plausible model of commodity price formation is consistent with

our nonparametric framework based on the general Itô processes of equation (2.1).

10These commodities are aluminum, bananas, barley, beef, Brent crude oil, cocoa, copper, corn, cotton,
iron, lamb, lead, nickel, orange, poultry, rubber, soybeans, sugar, tin, wheat, wool (fine), and zinc.
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The econometric results of Sections 2 and 3 apply to the distribution of the parameters

θ(k), k = 1, . . . , N , which in those sections represented the shares of total units held by

different ranked agents. If we interpret the xi as commodity prices, then the parameters θ(k)

represent commodity “price shares,” a quantity that is well defined but difficult to interpret

economically. It is easy to show, however, that the distribution of these commodity “price

shares” θ(k) is the same as the distribution of commodity prices relative to the average

of all commodity prices. This latter quantity has a clear economic interpretation. In this

section, we estimate reversion rates and idiosyncratic volatilities that describe the stationary

distribution of relative normalized commodity prices according to equation (2.21). As Figure

1 demonstrates, the distribution of these relative normalized prices appears to be roughly

stationary over time. Consistent with this observation, we confirm below that the methods

presented in Sections 2 and 3 do in fact accurately describe this stationary distribution.

If we let x̄(t) equal the average price of all N commodities at time t, then for all i =

1, . . . , N , the relative price of commodity i at time t is defined as

x̃i(t) =
xi(t)

x̄(t)
=

Nxi(t)

x1(t) + · · ·+ xN(t)
. (4.1)

The relative price x̃i(t) is equal to the price of commodity i at time t relative to the average

price of all N commodities at time t. If we let x̃(k)(t) denote the relative price of the k-th

ranked commodity at time t, then equations (2.4) and (2.8) imply that, for all i, k = 1, . . . , N ,

x̃i(t) = Nθi(t) and x̃(k)(t) = Nθ(k)(t). (4.2)

Note that the k-th ranked commodity at time t refers to the commodity with the k-th highest

price at time t. It follows from equation (4.2) that for all k = 1, . . . , N − 1 and all t,

log x̃(k)(t)− log x̃(k+1)(t) = log θ(k)(t)− log θ(k+1)(t), (4.3)

and hence equation (2.21) from Theorem 2.3 describes both the distribution of commodity

“price shares,” θ(k), and relative commodity prices, x̃(k). In other words, all of our previous

results apply to the distribution of relative commodity prices as well.
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4.1 Prediction and Data

The econometric results of Section 2 suggest that any stationary size distribution can be accu-

rately characterized by the reversion rates, −αk, and idiosyncratic volatilities, σk, according

to equation (2.21). Fernholz (2002) and Fernholz and Koch (2016) show, respectively, that

this is in fact true for the size distributions of total market capitalizations of U.S. stocks and

total assets of U.S. financial intermediaries. One of this paper’s contributions is to further

demonstrate the validity of our econometric techniques using a new data set.

The first step is to estimate the reversion rates −αk for each rank k = 1, . . . , N . As

described in Section 2, these reversion rates measure the growth rates of different ranked

commodity prices relative to the growth rate of all commodity prices together. In Figure 2,

we plot annualized values of minus the reversion rates αk for each rank in the distribution of

relative normalized commodity prices together with 95% confidence intervals based on the

results of 10,000 bootstrap resample estimates.

The figure shows a substantial and statistically significant deviation from Gibrat’s law

for commodity prices. According to Figure 2, the lowest-ranked, lowest-priced spot prices

on average grow 3-4% faster than all commodity prices together while the highest-ranked,

highest-priced spot prices on average grow between 5 and 10% slower than the aggregate.

This means that there is nearly a 15% difference between the average annual growth rates

of low- and high-ranked commodity prices. These differential growth rates give rise to the

cross-sectional mean reversion discussed and analyzed in Section 2, and are a shaping force

of the stationary distribution of relative commodity prices according to equation (2.21) from

Theorem 2.3. These differential growth rates also imply that there is predictability of future

commodity prices using rank, a point we shall explore in more detail below.

The reversion rates −αk are estimated using the procedure described in Section 3. In

particular, these estimated reversion rates are generated by first estimating the local time

parameters κk according to equations (3.5) and (3.6), and then generating estimates of the

parameters αk according to equation (3.7). Figure 3 plots the evolution of the local time

processes Λlog x̃(k)−log x̃(k+1)
, k = 1, . . . , N − 1, which we use to construct our estimates of the

reversion rates −αk.
The confidence intervals in Figure 2 are generated using this same procedure, only with

bootstrap resamples instead of the original full sample. These confidence intervals show that

the deviations from Gibrat’s law for commodity prices during the 1980 - 2015 period are
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highly statistically significant. This observation confirms the usefulness of our rank-based

methods, since these methods allow for growth rates that vary across the distribution of

relative commodity prices in the realistic manner shown in Figure 2.

The next step is to estimate the idiosyncratic volatilities σk, which is accomplished using

the discrete-time approximation given by equation (3.1). Figure 4 plots annualized estimates

of these parameter values for each rank in the distribution of relative normalized commod-

ity prices together with 95% confidence intervals based on the results of 10,000 bootstrap

resample estimates. The estimates and confidence intervals for the parameters αk and σk

in Figures 2 and 4 are smoothed across different ranks using a Gaussian kernel smoother.

Following Fernholz and Koch (2016), we smooth these parameters between 1 and 100 times

and then choose the number of smoothings within this range that minimizes the squared

deviation between the predicted relative commodity prices according to equation (2.21) and

the average observed relative commodity prices for the period 1981-2015.11

How well do the reversion rates −αk and idiosyncratic volatilities σk reported in Figures 2

and 4 replicate the true distribution of relative commodity prices? Figure 5 shows that these

estimated parameters generate predicted relative commodity prices according to equation

(2.21) that do in fact match the average relative commodity prices observed during the

1980 - 2015 sample period. The squared deviation between predicted and observed average

relative commodity prices over this sample period is 0.143. Thus, we further confirm the

validity of our econometric methods using commodity prices data.

The straight line in the left part of Figure 5 implies that the distribution of relative

normalized commodity prices approximately follows a power law at the highest commodity

price ranks during the 1980 - 2015 time period. Specifically, this figure indicates that at the

highest ranks, rank and price are approximately related by the linear relationship

log (price relative to average) = −0.386 log (rank) + 0.897. (4.4)

It is important to note, however, that even though relative commodity prices are well-

approximated by a power law at the highest ranks, the pattern in Figure 5 is also similar to

a lognormal distribution.

11The commodity prices are normalized to all equal each other at the start of our sample period in
1980. Since it takes a number of months for these initially equal relative prices to converge to a stationary
distribution, we remove the first year of data when generating observed average relative prices to compare
to predicted relative prices for the purposes of smoothing the parameters αk and σk.
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4.2 Rank-Based Forecasts of Future Commodity Prices

One of the implications of Theorem 2.3 is that there is a stationary distribution of relative

commodity prices if and only if α1 + · · · + αk < 0. This necessary condition is a cross-

sectional mean-reversion condition which states that the growth rates of the prices of the

higher-priced, higher-ranked commodities must on average be lower than the growth rates

of the prices of the lower-priced, lower-ranked commodities. This condition is different from

standard notions of mean reversion necessary for the stationarity of a single process. Indeed,

we make no assumptions about mean reversion or stationarity for the individual processes

xi, since such single-process stationarity is not necessary for any of the results in this paper.

Instead, we require only the cross-sectional mean-reversion condition specified across ranks

in Theorem 2.3.

This condition of Theorem 2.3 offers a testable prediction for our commodity prices

data—there should be predictability of future commodity prices relative to each other based

on rank. In particular, the cross-sectional mean-reversion condition requires that the monthly

log growth rates of the top k ranked commodities be smaller on average than the monthly log

growth rates of the bottom N − k ranked commodities, for all rank cutoffs k = 1, . . . , N − 1.

There are 21 different rank cutoffs to test with our data set consisting of 22 commodity

prices from 1980 - 2015. Table 1 reports the average difference in monthly log growth rates

between the top k and bottom N − k commodities, for all 21 rank cutoffs k. The table also

reports the standard deviation of this difference in log growth rates and the t-statistic for

the null hypothesis that the difference in log growth rates is equal to zero.

Table 1 presents empirical evidence of statistically significant predictability of future

commodity prices based on commodity rank. This is exactly what is predicted by the cross-

sectional mean-reversion condition of Theorem 2.3. The table shows that for all 21 rank

cutoffs the null hypothesis can be rejected at 5% significance, and for most rank cutoffs the

null hypothesis can be rejected at 0.1% significance. In all cases, the log growth rate of the

top k ranked commodity prices is below the log growth rate of the bottom N − k ranked

commodity prices, just as our econometric theory in Section 2 requires.

We also wish to investigate the power of our rank-based econometric theory for forecasting

future commodity prices out of sample. The cross-sectional mean-reversion condition of

Theorem 2.3 and the estimated reversion rates −αk shown in Figure 2 suggest that rank

may have some power in forecasting future commodity prices, although any such forecasting
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power is limited by the high estimates for the volatility parameters σk reported in Figure 4.

We generate forecasts using equation (3.3) from Lemma 3.2 in Section 3. In particular, if we

write equation (3.3) in terms of relative prices x̃ rather than unit shares θ, then we have

Et
[
d log

(
x̃pt(1)(t) + · · ·+ x̃pt(k)(t)

)]
= −

x̃(k)(t)

2(x̃(1)(t) + · · ·+ x̃(k)(t))
Et

[
dΛlog x̃(k)−log x̃(k+1)

(t)
]
,

(4.5)

for all k = 1, . . . , N . Note that the expected value of d log
(
x̃(1)(t) + · · ·+ x̃(k)(t)

)
in equa-

tion (3.3) is zero since a stationary distribution of relative commodity prices implies a zero

expected change in the ranked log relative prices x̃(k).

According to equation (4.5), we can forecast the change in relative log prices of each subset

of top k ranked commodities using our estimates of the change in the local time processes

Λlog x̃(k)−log x̃(k+1)
. Our estimates of the change in the local time processes are denoted by κ̂k,

and are defined in equation (3.6) in Section 3. Thus, for each k = 1, . . . , N − 1, we can use

our estimates κ̂k to forecast relative log commodity prices one month ahead for the top k

ranked commodities in that month. In order for these forecasts to be meaningful, they must

be outside of the sample period in which the local time parameters κk are estimated.

We adopt the following two out-of-sample forecast procedures. First, we use the first ten

years of our 1980 - 2015 sample period to generate estimates κ̂k as described in Section 3,

and then we use those fixed estimates together with equation (4.5) to forecast relative log

commodity prices one month ahead over the remaining 1990 - 2015 time period. Second,

we use rolling estimates κ̂k that are updated each month to forecast relative log commodity

prices one month ahead over the 1990 - 2015 time period. For this procedure, each month’s

forecast uses estimates κ̂k that are generated using commodity price data from all months

prior to that forecast month. In other words, the first forecast in January 1990 uses the same

ten-year sample period as in the first procedure described above to generate the estimates

κ̂k, but each subsequent month’s forecast is generated using updated estimates κ̂k.

Table 2 reports the root mean squared error (RMSE) of one-month out-of-sample fore-

casts using the two procedures described in the previous paragraph relative to the RMSE of

a random-walk forecast that uses the current month’s relative commodity prices to forecast

the next month’s relative commodity prices. Values of this RMSE ratio below one indi-

cate that our procedures generated more accurate predictions than a random-walk forecast.

These ratios are reported for all rank cutoffs k = 1, . . . , N − 1. For all 21 rank cutoffs, the
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RMSE ratio is below one and hence the out-of-sample forecasts generated using equation

(4.5) and estimated local times κ̂k in all cases outperform a random-walk forecast using

either procedure. In some cases, especially at the highest rank cutoffs, our local-time-based

forecasts substantially outperform the random-walk forecasts.

The results reported in Table 2 are notable because these forecasts do not use any informa-

tion about supply, demand, economic conditions, or any commodity-specific fundamentals.

Instead, the only information the forecasts rely on is commodity price rank, which is used in

conjunction with the econometric theory developed in this paper. Nonetheless, these simple

forecasts are able to improve on random-walk forecasts for every subset of top k ranked

commodities over the 1990 - 2015 forecast period. Our forecast exercise is different from

other commodity price forecast exercises such as those of Chinn and Coibion (2014) and

West and Wong (2014) since we generate forecasts of sums of multiple top-ranked commod-

ity prices relative to all commodity prices rather than forecasts of individual real commodity

prices. Nonetheless, the success of this simple local-time-based forecast methodology is no-

table. Note, for example, that most of the RMSE ratios reported in Table 2 are lower than

the RMSE ratios reported by West and Wong (2014), who use a factor model to forecast

individual one-month-ahead commodity prices.

It is beyond the scope of this paper to compare our local-time-based forecasts in detail

to other more common methods of forecasting future commodity prices. Nonetheless, there

is no reason why the local-time-based forecasting methodology presented in this section

cannot be combined with more common commodity forecasting methods to generate even

better forecasts. In fact, because commodity price rank probably does not correlate strongly

with fundamentals or forecasting factors, it is likely that forecasts using both the rank-based

methods presented in this paper and more traditional commodity forecasting methods such

as those of Alquist and Coibion (2014) or West and Wong (2014) can generate some of the

best forecasts in the literature so far.

5 Conclusion

This paper presents rank-based, nonparametric methods that allow for the characterization

of general power law distributions in random growth settings. We show that any stationary

distribution in a random growth setting is shaped entirely by two factors—the idiosyncratic
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volatilities and reversion rates (a measure of cross-sectional mean reversion) for different

ranks in the distribution. An increase in idiosyncratic volatilities increases concentration,

while an increase in reversion rates decreases concentration. We also provide methods for

estimating these two shaping factors using panel data.

Using data on a set of 22 global commodity prices from 1980 - 2015, we show that our

rank-based, nonparametric methods accurately describe the distribution of relative normal-

ized commodity prices. According to our econometric results, a necessary condition for the

existence of a stationary distribution is that higher-ranked commodity prices must grow

more slowly than lower-ranked commodity prices. In other words, our results predict that

commodity price rank will forecast future commodity prices. We confirm this prediction and

show that out-of-sample rank-based forecasts derived from our econometric results are more

accurate than random-walk forecasts of one-month-ahead commodity prices during the 1990

- 2015 period.
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Rank Cutoff k Average Difference Standard Deviation t-Statistic

1 -1.46% 9.34% -3.24

2 -1.69% 7.06% -4.96

3 -1.42% 5.89% -4.98

4 -1.49% 4.98% -6.19

5 -1.28% 4.57% -5.80

6 -1.14% 4.20% -5.62

7 -1.05% 3.93% -5.51

8 -0.87% 3.72% -4.83

9 -0.75% 3.45% -4.47

10 -0.68% 3.45% -4.07

11 -0.64% 3.40% -3.89

12 -0.61% 3.37% -3.73

13 -0.62% 3.29% -3.90

14 -0.59% 3.37% -3.59

15 -0.52% 3.41% -3.17

16 -0.47% 3.53% -2.77

17 -0.45% 3.82% -2.41

18 -0.36% 3.80% -1.98

19 -0.47% 4.22% -2.32

20 -0.53% 4.87% -2.23

21 -0.88% 7.16% -2.55

Table 1: Averages and standard deviations of the difference between monthly log growth
rates for top k ranked commodities minus bottom N − k ranked commodities from 1980 -
2015, for different values of the rank cutoff k. The t-statistics are for the null hypothesis
that the difference in log growth rates between high-ranked and low-ranked commodities is
equal to zero.
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Rank Cutoff k Fixed Estimation of κk Rolling Estimation of κk

1 0.988 0.988

2 0.972 0.973

3 0.971 0.972

4 0.958 0.959

5 0.963 0.963

6 0.964 0.964

7 0.966 0.965

8 0.982 0.978

9 0.993 0.989

10 0.990 0.986

11 0.983 0.980

12 0.986 0.983

13 0.981 0.978

14 0.989 0.987

15 0.990 0.988

16 0.987 0.985

17 0.990 0.988

18 0.996 0.992

19 0.994 0.990

20 0.994 0.991

21 0.990 0.987

Table 2: Root mean squared error (RMSE) ratios of one-month-ahead out-of-sample forecasts
of log price of top k ranked commodities relative to the price of all N commodities from 1990 -
2015, for different values of the rank cutoff k. These error ratios report RMSEs for forecasts
using equation (4.5) relative to RMSEs for random-walk forecasts. The fixed estimation
column corresponds to one-month-ahead forecasts from 1990-2015 using estimates of the
local time parameters κk generated from the price data before 1990 only, while the rolling
estimation column corresponds to one-month-ahead forecasts from 1990-2015 using updated
rolling estimates of the local time parameters κk from all months of price data before the
forecast month.
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Figure 1: Log prices of commodities relative to the average price of all commodities, 1980 -
2015.
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Figure 2: Point estimates and 95% confidence intervals of minus the reversion rates (αk) for
different ranked commodities, 1980 - 2015.
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commodity price volatilities (σk) for different ranked commodities, 1980 - 2015.
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A The Efficiency of Local-Time-Based Estimation

We wish to investigate the efficiency of the local-time-based estimator α̂k defined in equation

(3.7) in Section 3. In order to accomplish this, we consider a simple rank-based econometric

model that yields Zipf’s law for the distribution of agents’ unit shares θ(k).

Let rt(i) denote the rank of agent i in terms of unit holdings at time t, so that rt(i) = k

if and only if xi(t) = x(k)(t). We assume that Gibrat’s law holds in the two econometric

models we consider in this appendix. In particular, we assume that the units held by each

agent i follow the stochastic differential equation

d log xi = (grt(i) + c(t)) dt+ γ dBi(t), (A.1)

where gk = g < 0 for all k > N , gN = −(N − 1)g, c(t) is a common growth rate across all

agents, and γ > 0 is the common standard deviation of idiosyncratic shocks to agents’ unit

holdings. For this econometric model, the reversion rates −αk defined in equation (2.17) are

equal to −g > 0, for all k = 1, . . . , N − 1. Similarly, the idiosyncratic volatilities σk defined

in equation (2.18) are equal to 2γ2, for all k = 1, . . . , N − 1. Thus, the econometric model

(A.1) follows Gibrat’s law, with the high growth rate of the agent at rank N corresponding

to the “friction” that is needed for a stationary distribution to exist (Champernowne, 1953;

Gabaix, 2009).

If the parameters from equation (A.1) satisfy γ2 = −2g, then this econometric model

generates a stationary power law distribution of unit shares that follows Zipf’s law. This

follows because the parameters α and σ2 from equation (2.25) are equal to g and 2γ2 from

equation (A.1), respectively.12 In Section 2.4, we showed that Zipf’s law follows from Gibrat’s

law if σ2 = −4α. It follows, then, that Zipf’s law obtains in the econometric model (A.1) if

2γ2 = −4g.

We consider two parameterizations of this econometric model. In the first, we set g =

−0.02 and γ = 0.2. In the second, we set g = −0.2 and γ = 0.632 =
√

0.4. Because γ2 = −2g

in both cases, these two parameterizations generate stationary distributions that follow Zipf’s

law. We also set the total number of agents N equal to 100 for both parameterizations.

In addition to the local-time-based estimation of the reversion rates −αk described in

12The econometric model (A.1) satisfies the stability condition of Theorem 2.3 because α1 + · · · + αk =
kg < 0, for all k = 1, . . . , N − 1.
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Section 3, it is also possible to directly estimate these parameters using equation (2.17). In

particular, we define the direct estimator of the parameters αk, for all k = 1, . . . , N , using a

discrete-time approximation of equation (2.17):

α̂Dk =
1

T − 1

T−1∑
t=1

[
log θpt(k)(t+ 1)− log θpt(k)(t)

]
. (A.2)

We investigate the efficiency of local-time-based estimation of the reversion rates by com-

paring the asymptotic properties of the estimator α̂k defined in equation (3.7) relative to the

direct estimator α̂Dk defined in equation (A.2).

We ran 1000 simulations of the two parameterizations of the econometric model (A.1) over

a period of 50 years. The data are assumed to be observable at a monthly frequency, as in

the case of the commodity price data examined in Section 4. For both parameterizations, we

produce local-time-based estimates and direct estimates of the parameters αk using samples

that range from 1 to 50 years of monthly data. The results are shown in Table 3, which

reports the total root mean squared error (RMSE) of the estimated parameters relative to

the true parameters summed over all 100 ranks.13 These total RMSEs are averages over all

1000 simulations, and are reported for different sample lengths.

According to Table 3, the local-time-based estimator α̂k generates smaller total RMSEs

than the direct estimator α̂Dk at all sample lengths for both parameterizations of the econo-

metric model (A.1). The efficiency advantage of the local-time-based estimator is substantial,

and is larger in the first parameterization than in the second. This first result highlights

the desirable small-sample properties of the local-time-based estimator α̂k presented in this

paper. This second result suggests that more volatile systems with higher values of the

parameters αk and σk may yield smaller efficiency gains for the local-time-based estimator

relative to the direct estimator α̂Dk . The performance of the local-time-based estimator α̂k

in the first, less-volatile parameterization is worth highlighting, as the estimated parameters

converge rapidly to the true parameters after just a few years of observations.

13Because there are N = 100 agents in the econometric model, there are 100 parameters αk to estimate.
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B Assumptions and Regularity Conditions

In this appendix, we present the assumptions and regularity conditions that are necessary

for the stable distribution characterization in Theorem 2.3. As discussed in Section 2, these

assumptions admit a large class of continuous unit processes for the agents in our setup.

The first assumption establishes basic integrability conditions that are common for both

continuous semimartingales and Itô processes.

Assumption B.1. For all i = 1, . . . , N , the growth rate processes µi satisfy∫ T

0

|µi(t)| dt <∞, T > 0, a.s., (B.1)

and the volatility processes δi satisfy∫ T

0

∥∥δi(t)∥∥2 dt <∞, T > 0, a.s., (B.2)∥∥δi(t)∥∥2 > 0, t > 0, a.s. (B.3)

lim
t→∞

1

t

∥∥δi(t)∥∥2 log log t = 0, a.s., (B.4)

Conditions (B.1) and (B.2) are standard in the definition of an Itô process, while condition

(B.3) ensures that agents’ holdings of units contain a nonzero random component at all times.

Condition (B.4) is similar to a boundedness condition in that it ensures that the variance of

agents’ unit holdings does not diverge to infinity too rapidly.

The second assumption underlying our results establishes that no two agents’ unit hold-

ings be perfectly correlated over time. In other words, there must always be some idiosyn-

cratic component to each agent’s unit dynamics. Finally, we also assume that no agent’s

unit holdings relative to the total units for all agents shall disappear too rapidly.

Assumption B.2. The symmetric matrix ρ(t), given by ρ(t) = (ρij(t)), where 1 ≤ i, j ≤ N ,

is nonsingular for all t > 0, a.s.

Assumption B.3. For all i = 1, . . . , N , the unit share processes θi satisfy

lim
t→∞

1

t
log θi(t) = 0, a.s. (B.5)
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C Proofs

This appendix presents the proofs of Lemmas 2.1, 2.2 3.1, and 3.2, and Theorem 2.3.

Proof of Lemma 2.1. By definition, x(t) = x1(t) + · · · + xN(t) and for all i = 1, . . . , N ,

θi(t) = xi(t)/x(t). This implies that

dx(t) =
N∑
i=1

dxi(t) =
N∑
i=1

θi(t)x(t)
dxi(t)

xi(t)
,

from which it follows that
dx(t)

x(t)
=

N∑
i=1

θi(t)
dxi(t)

xi(t)
. (C.1)

We wish to show that the process satisfying equation (2.3) also satisfies equation (C.1).

If we apply Itô’s Lemma to the exponential function, then equation (2.3) yields

dx(t) = x(t)µ(t) dt+
1

2
x(t)

N∑
i,j=1

θi(t)θj(t)δi(t) · δj(t) dt

+ x(t)
N∑
i=1

θi(t)δi(t) · dB(t),

(C.2)

a.s., where µ(t) is given by equation (2.5). Using the definition of ρij(t) from equation (2.2),

we can simplify equation (C.1) and write

dx(t)

x(t)
=

(
µ(t) +

1

2

N∑
i,j=1

θi(t)θj(t)ρij(t)

)
dt+

N∑
i=1

θi(t)δi(t) · dB(t). (C.3)

Similarly, the definition of µ(t) from equation (2.5) allows us to further simplify equation

(C.3) and write

dx(t)

x(t)
=

(
N∑
i=1

θi(t)µi(t) +
1

2

N∑
i=1

θi(t)ρii(t)

)
dt+

N∑
i=1

θi(t)δi(t) · dB(t)

=
N∑
i=1

θi(t)

(
µi(t) +

1

2
ρii(t)

)
dt+

N∑
i=1

θi(t)δi(t) · dB(t). (C.4)

If we again apply Itô’s Lemma to the exponential function, then equation (2.1) yields,
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a.s., for all i = 1, . . . , N ,

dxi(t) = xi(t)

(
µi(t) +

1

2

∥∥δi(t)∥∥2) dt+ xi(t)δi(t) · dB(t)

= xi(t)

(
µi(t) +

1

2
ρii(t)

)
dt+ xi(t)δi(t) · dB(t). (C.5)

Substituting equation (C.5) into equation (C.4) then yields

dx(t)

x(t)
=

N∑
i=1

θi(t)
dxi(t)

xi(t)
,

which completes the proof.

Proof of Lemma 2.2. Agents’ unit holding processes xi are absolutely continuous in the

sense that the random signed measures µi(t) dt and ρii(t) dt are absolutely continuous with

respect to Lebesgue measure. As a consequence, we can apply Lemma 4.1.7 and Proposition

4.1.11 from Fernholz (2002), which yields equations (2.12) and (2.13).

Proof of Lemma 3.1. This relationship between the rank-based relative growth rate pa-

rameters αk and the local time parameters κk is established in the proof of Theorem 2.3 below

(see equation (C.9) below). That proof also establishes the fact that αN = −(α1+· · ·+αN−1)
(see equation (C.11) below).

Proof of Lemma 3.2. Consider the function fk(θ1, . . . , θN) = θ(1) + · · · + θ(k), where 1 ≤
k ≤ N . This function satisfies

∂fk
∂θl

= 1,

for all l = 1, . . . , k, and
∂fk
∂θl

= 0,

for all l = k+1, . . . , N . Furthermore, the support of the local time processes Λlog θ(k)−log θ(k+1)

is the set {t : θ(k)(t) = θ(k+1)(t)}, for all k = 1, . . . , N − 1. According to Theorem 4.2.1 and

equations (3.1.1)-(3.1.2) of Fernholz (2002), then, the function fk(θ1, . . . , θN) = θ(1)+· · ·+θ(k)
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satisfies the stochastic differential equation

d log(xpt(1)(t) + · · ·+ xpt(k)(t))− d log x(t) = d log fk(θ1(t), . . . , θN(t))

−
θ(k)(t)

2(θ(1)(t) + · · ·+ θ(k)(t))
dΛlog θ(k)−log θ(k+1)

, a.s.,

(C.6)

for all k = 1, . . . , N .14 Equation (C.6) is equivalent to

d log
(
θpt(1)(t) + · · ·+ θpt(k)(t)

)
= d log

(
θ(1)(t) + · · ·+ θ(k)(t)

)
−

θ(k)(t)

2(θ(1)(t) + · · ·+ θ(k)(t))
dΛlog θ(k)−log θ(k+1)

(t),

which confirms equation (3.3) from Lemma 3.2.

Proof of Theorem 2.3. This proof follows arguments from Chapter 5 of Fernholz (2002).

According to equation (2.15), for all k = 1, . . . , N ,

log θ(k)(T ) =

∫ T

0

(
µpt(k)(t)− µ(t)

)
dt+

1

2
Λlog θ(k)−log θ(k+1)

(T )− 1

2
Λlog θ(k−1)−log θ(k)(T )

+

∫ T

0

δpt(k)(t) · dB(t)−
N∑
i=1

∫ T

0

θi(t)δi(t) · dB(t).

(C.7)

Consider the asymptotic behavior of the process log θ(k). Assuming that the limits from equa-

tion (2.19) exist, then according to the definition of αk from equation (2.17), the asymptotic

behavior of log θ(k) satisfies

lim
T→∞

1

T
log θ(k)(T ) = αk +

1

2
κk −

1

2
κk−1 + lim

T→∞

1

T

∫ T

0

δpt(k)(t) · dB(t)

− lim
T→∞

1

T

N∑
i=1

∫ T

0

θi(t)δi(t) · dB(t), a.s.

(C.8)

Assumption B.3 ensures that the term on the left-hand side of equation (C.8) is equal to

zero, while Assumption B.1 ensures that the last two terms of the right-hand side of this

equation are equal to zero as well (see Lemma 1.3.2 from Fernholz, 2002). If we simplify

14Equation (C.6) relies on the fact that log(xpt(1)(t)+ · · ·+xpt(k)(t)) is the value over time of a “portfolio”

of unit holdings with weights of
θ(l)(t)

θ(1)+···+θ(k)
placed on each ranked unit holding l = 1, . . . , k and weights of

zero placed on each ranked unit holding l = k + 1, . . . , N .
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equation (C.8), then, we have that

αk =
1

2
κk−1 −

1

2
κk, (C.9)

which implies that

αk − αk+1 =
1

2
κk−1 − κk +

1

2
κk+1, (C.10)

for all k = 1, . . . , N − 1. Since equation (C.9) is valid for all k = 1, . . . , N , this establishes a

system of equations that we can solve for κk. Doing this yields the equality

κk = −2(α1 + · · ·+ αk), (C.11)

for all k = 1, . . . , N . Note that asymptotic stability ensures that α1 + · · · + αk < 0 for

all k = 1, . . . , N , while the fact that αN = 1
2
κN−1 = −(α1 + · · · + αN−1) ensures that

α1 + · · · + αN = 0. Furthermore, if α1 + · · · + αk > 0 for some 1 ≤ k < N , then equation

(C.11) generates a contradiction since κk ≥ 0 by definition. In this case, it must be that

Assumption B.3 is violated and limT→∞
1
T

log θ(k)(T ) 6= 0 for some 1 ≤ k ≤ N .

The last term on the right-hand side of equation (2.16) is an absolutely continuous martin-

gale, and hence can be represented as a stochastic integral with respect to Brownian motion

B(t).15 This fact, together with equation (3.2) and the definitions of αk and σk from equa-

tions (2.17)-(2.18), motivates our use of the stable version of the process log θ(k)− log θ(k+1).

Recall that, by equation (2.20), this stable version is given by

d
(
log θ∗(k)(t)− log θ∗(k+1)(t)

)
= −κk dt+ dΛlog θ∗

(k)
−log θ∗

(k+1)
(t) + σk dB(t), (C.12)

for all k = 1, . . . , N−1. According to Fernholz (2002), Lemma 5.2.1, for all k = 1, . . . , N−1,

the time-averaged limit of this stable version satisfies

lim
T→∞

1

T

∫ T

0

(
log θ∗(k)(t)− log θ∗(k+1)(t)

)
dt =

σ2
k

2κk
=

σ2
k

−4(α1 + · · ·+ αk)
, (C.13)

a.s., where the last equality follows from equation (C.11).

As shown by Banner et al. (2005), the processes log θ∗(k) − log θ∗(k+1) are stationary if the

15This is a standard result for continuous-time stochastic processes (Karatzas and Shreve, 1991; Nielsen,
1999).
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condition α1 + · · ·+ αk < 0 holds, for all k = 1, . . . , N . Thus, by ergodicity, equation (2.21)

follows from equation (C.13). To the extent that the stable version of log θ(k) − log θ(k+1)

from equation (C.12) approximates the true version of this process from equation (2.16),

then, the expected value of the true process log θ(k) − log θ(k+1) will be approximated by

−σ2
k/4(α1 + · · ·+ αk), for all k = 1, . . . , N − 1.
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Parameterization: g = −0.02, γ = 0.2

Sample Length (Years) Local-Time-Based Estimator Direct Estimator

1 0.19% 4.75%

2 0.12% 3.22%

3 0.10% 2.55%

4 0.09% 2.27%

5 0.09% 2.01%

10 0.08% 1.42%

20 0.08% 0.97%

30 0.08% 0.80%

40 0.08% 0.69%

50 0.08% 0.62%

Parameterization: g = −0.2, γ = 0.632

Sample Length (Years) Local-Time-Based Estimator Direct Estimator

1 1.77% 14.67%

2 1.19% 10.66%

3 1.04% 8.02%

4 0.97% 6.98%

5 0.92% 6.16%

10 0.79% 3.93%

20 0.66% 2.51%

30 0.57% 1.79%

40 0.51% 1.33%

50 0.48% 1.03%

Table 3: Total root mean squared errors (RMSEs) of direct and local-time-based estimates
of parameters αk relative to true values for two parameterizations of the econometric model
(A.1) and different sample lengths. The reported total RMSEs are sums over all 100 es-
timated parameters αk, and are averaged across 1000 simulations. The local-time-based
estimator is defined in equation (3.7) and the direct estimator is defined in equation (A.2).
The top panel presents total RMSEs for a parameterization with g = −0.02 and γ = 0.2 and
the bottom panel presents total RMSEs for a parameterization with g = −0.2 and γ = 0.632.
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