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Abstract

We consider a setup in which infinitely-lived households face idiosyncratic invest-

ment risk and show that in this case the equilibrium distribution of wealth becomes

increasingly right-skewed over time until wealth concentrates entirely at the top. The

households in our setup are identical in terms of their patience and their abilities, and

we assume that there are no redistributive mechanisms—neither explicit in the form of

government tax or fiscal policies, nor implicit in the form of limited intergenerational

transfers. Our results demonstrate that the presence of such redistributive mechanisms

alone ensures the stability of the distribution of wealth over time.
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1 Introduction

A notable collection of recent research has described the significant concentration of income

and wealth that exists in many countries of the world. According to Atkinson et al. (2011)

and Wolff (2012), the richest 1% of households in the United States hold more than 33%

of total wealth and earn nearly 25% of total income, with similar numbers observed in

other countries as well.1 Dı́az-Giménez et al. (2002) document that the Gini coefficients

of the distributions of income and wealth in the United States are equal to 0.55 and 0.80,

respectively, and Davies et al. (2011) find similar Gini coefficients for wealth throughout

the world. Over the last three decades, Atkinson et al. (2011) find that there has been an

increase in the concentration of income in many countries while Wolff (2010) describes a

similar though smaller increase in the concentration of wealth in the United States.

Motivated by these stylized facts, we develop a model in which infinitely-lived households

face idiosyncratic investment risk, and we examine the dynamic behavior of the distribution

of wealth over time. Our goal is to explore these dynamics in the absence of any redistributive

mechanisms, so that the outcome of the model is affected only by households’ optimal deci-

sions about how much to consume or save and their realized labor and investment incomes.

Because we assume that all households are equally patient and have identical abilities, it is

luck alone—in the form of high realized investment returns—that creates diverging levels of

wealth. In this setting, we show that the equilibrium distribution of wealth is not stationary,

and, using recent results in mathematical finance and stochastic portfolio theory, we prove

that it becomes increasingly right-skewed over time and tends to a limit in which wealth is

concentrated entirely at the top.

Many of the first attempts to account for the right-skewness of the distribution of wealth

assumed that households face uninsurable idiosyncratic labor income risk. While this ap-

proach has had some empirical success, many of these so-called Bewley models fail to generate

high Gini coefficients and heavily right-skewed wealth distributions.2 Another explanation

1Atkinson (2005), Moriguchi and Saez (2008), Piketty (2003), Piketty and Saez (2003), and Saez and
Veall (2005) present detailed analyses of income inequality in the United Kingdom, Japan, France, the
United States, and Canada, respectively.

2Cagetti and De Nardi (2008) and Ljungqvist and Sargent (2004) provide both a discussion and survey
of this extensive literature. Some authors have in fact successfully generated right-skewness in this setting
by expanding the setup to include extra features such as borrowing constraints, preferences for bequests,
and entrepreneurship (Cagetti and De Nardi, 2006; De Nardi, 2004; Quadrini, 2000) or heterogeneous and
fluctuating discount rates (Hendricks, 2007; Krussel and Smith, 1998).
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for right-skewed distributions of wealth involves uninsurable investment risk and the multi-

plicative process of wealth accumulation. The assumption that households face idiosyncratic

investment risk was first introduced into a macroeconomic model by Angeletos (2007) and

Angeletos and Calvet (2006), and has since been incorporated into models of wealth dis-

tribution such as Benhabib and Zhu (2009), Benhabib et al. (2011), and Zhu (2010). The

primary motivation for this assumption is empirical. Indeed, Benhabib et al. (2011) describe

the extensive evidence that exists showing that both private business equity and principal

residence ownership are important sources of idiosyncratic investment risk for individuals

and households.3

We embrace this empirical evidence and show that in an economy populated by dynas-

ties of infinitely-lived households that face uninsurable investment risk, the economy’s total

wealth concentrates with the wealthiest household over time. This extreme event occurs

despite the fact that all households earn identical labor incomes and have identical invest-

ment abilities (measured as the expected instantaneous return of risky investments). What

drives this asymptotic result, then, is simply the diverging realized rates of investment re-

turn earned by different households over time. Crucially, we consider an economy in which

there are no redistributive mechanisms, a fact that distinguishes our setup from those of

Benhabib et al. (2011, 2014), Champernowne (1953), and Gabaix (2009). It turns out that

these distinguishing assumptions are critical, since these other setups generate stationary

distributions of wealth while our setup does not. The key contribution of this paper is to

precisely characterize the nature of the instability that exists in economies without redis-

tributive mechanisms. Indeed, the central message of our analysis is that in these cases

the equilibrium distribution of wealth becomes increasingly right-skewed over time as the

wealthiest household accumulates ever larger quantities of wealth relative to the rest of the

population.

We interpret redistribution broadly, so that redistributive mechanisms include any pro-

cess that proportionately affects wealthy households and poor households differently. This

includes explicit mechanisms such as government tax or fiscal policies that directly trans-

3For example, according to calculations by Bertaut and Starr-McCluer (2002) and Wolff (2012) using data
from the 2001 Survey of Consumer Finances (SCF), private business equity and the gross value of principal
residences make up, respectively, 27% and 28.2% of total U.S. household wealth. These investments are
highly volatile, with a standard deviation for the return of housing roughly equal to 15% according to Case
and Shiller (1989) and Flavin and Yamashita (2002), and an even larger volatility for the capital gains and
earnings on private equity as reported by Moskowitz and Vissing-Jorgensen (2002).
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fer income from wealthy to poor households as well as implicit mechanisms such as limited

intergenerational transfers of wealth that reduce the total wealth held by wealthy house-

holds proportionally more than that of poor households. Although implicit redistributive

mechanisms do not involve direct transfers of wealth from wealthy to poor households, their

stabilizing effect on the equilibrium distribution of wealth is the same. One of the goals of

our paper is to demonstrate this fact.

Much of the heterogeneous-agent macroeconomics literature includes investment income

taxes and other explicitly redistributive government policies. These setups provide a good

environment in which to compare the effects of various different government policies on the

equilibrium distribution of wealth.4 For our purposes, it is essential to exclude such policies so

that we can examine the dynamic behavior of an economy in which there is no redistribution.

Our results do, however, have implications for the role of redistributive government tax and

fiscal policies in the economy. For example, our findings are consistent with the simultaneous

decrease in the progressivity of taxation and increase in the concentration of income and

wealth in the United States that has been documented over the past three decades (see

Atkinson et al., 2011 and Wolff, 2010). Indeed, our results about the instability of the

distribution of wealth in the absence of redistributive mechanisms suggest a potentially

important stabilizing role for redistributive income and estate taxes in a manner that is

broadly consistent with some of the conclusions of Benhabib et al. (2011) and Diamond

and Saez (2011). More research contrasting these possible benefits of taxation with the

well-known distortive costs of taxation is warranted.

Another implication of our results relates to the possibility of redistributive intergener-

ational transfers. If the economy consists of overlapping generations of finitely-lived house-

holds, then intergenerational transfers of wealth that proportionately affect wealthy and

poor households differently can act as an implicit redistributive mechanism. This requires

that wealthy dynasties of households transfer proportionally less wealth to their offspring

than poor dynasties of households. Surprisingly, this implies that the absolute size of these

transfers is not directly relevant. Indeed, large transfers that are smaller proportions of total

wealth for wealthy households are redistributive, while small transfers that are larger pro-

portions of total wealth for wealthy households are not.5 In the appendix, we alter our basic

4In addition to those papers already mentioned above, Benhabib and Bisin (2007), Castañeda et al.
(2003), and Stiglitz (1969) provide valuable analyses of the impact of various government policies on the
distribution of wealth.

5In other words, whether households transfer 99% or 1% of their wealth to their offspring is irrelevant, but
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model so that households have finite lifespans and “joy of giving” bequest motives in order

to explore how intergenerational transfers may act as an implicit redistributive mechanism.

The main result is that such transfers are redistributive only if households receive positive

riskless labor incomes and the intensity of their bequest motives is sufficiently low. In these

cases, the stability of the distribution of wealth relies on a delicate interaction between

positive discounted labor incomes and limited growth of household wealth.

Many setups, including some that share much in common with our setup such as Benhabib

et al. (2011) and Zhu (2010), exploit this subtle interaction between positive human wealth

and limited growth of total wealth in order to make intergenerational transfers an implicit

redistributive mechanism. This is usually accomplished by assuming riskless labor incomes

and a low intensity of bequest motives, which together ensure that positive shocks to wealth

across generations proportionally affect poor households more than wealthy households. In

the appendix, we describe the details behind this process and discuss the implications. In the

rest of this paper, however, we abstract away from the implicit redistribution that can exist

with overlapping generations since our goal is to investigate the dynamics of the distribution

of wealth in the absence of any kind of redistribution. To some extent, then, our main setup

extends those setups that feature overlapping generations to consider the implications of

intergenerational transfers of wealth that are not implicitly redistributive. When combined

with the results of others such as Benhabib et al. (2011) and Zhu (2010), our results imply

that stability of the equilibrium distribution of wealth through intergenerational transfers

alone relies on those transfers being proportionally smaller for wealthy households. In light of

this conclusion, we believe that a more detailed empirical understanding of the characteristics

of intergenerational transfers of wealth could yield substantial insight regarding the dynamics

of the distribution of wealth.

In addition to analytically characterizing the behavior of the equilibrium distribution of

wealth over time, we also consider a number of model parameterizations and present the

corresponding simulations. This exercise allows us to observe the behavior of the wealth

distribution over time given a range of different assumptions about the underlying charac-

teristics of the economy. Because all households are identical in every way except for their

the relative proportion of wealth that wealthy versus poor households transfer to their offspring is relevant.
If wealthy households transfer 98% of their wealth to their offspring, then poor households must transfer 99%
of their wealth to their offspring for intergenerational transfers to be an implicit redistributive mechanism.
Similarly, if wealthy households transfer 1% of their wealth to their offspring, then poor households must
transfer 2% of their wealth to their offspring.
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realized rates of return on wealth, we find that the only factor that affects the rate at which

wealth concentrates at the top is the degree to which households are exposed to uninsurable

idiosyncratic investment risk. As households increase their exposure to idiosyncratic risk,

the rate at which the distribution of wealth becomes more right-skewed over time also in-

creases. Of course, households’ exposure to investment risk depends on the deep parameters

of the model, such as households’ risk-aversion, the expected excess returns of risky assets

relative to a risk-free asset, and the standard deviation of the returns of risky assets. This

central role of idiosyncratic risk in generating a rapid increase in wealth inequality highlights

the importance of market incompleteness and uninsurable risk in an economy. Much like

Benhabib et al. (2011) and Zhu (2010), our conclusions give a renewed significance to the

empirical findings of Case and Shiller (1989), Flavin and Yamashita (2002), and Moskowitz

and Vissing-Jorgensen (2002), and suggest that more research about the causes and conse-

quences of incomplete markets is warranted. Indeed, our results indicate that any actions or

policies that address uninsurable idiosyncratic investment risk have the potential to reduce

income and wealth inequality, and slow the pace at which the economy’s wealth accumulates

at the top.

The main conclusion of our analysis is clear. In the absence of any redistribution, the

distribution of wealth is unstable over time and grows increasingly right-skewed until virtu-

ally all wealth is concentrated with a single household. This occurs despite the fact that the

households in the economy have identical opportunities and identical preferences and abili-

ties. It is important to emphasize that our setup in this paper, in which there is absolutely no

redistribution, is intended to describe an important benchmark case rather than to capture

the true state of the world except, perhaps, in extreme situations such as pre-revolutionary

France (see Carlyle, 1837). In reality, a number of potentially redistributive mechanisms,

such as government tax and fiscal policies and limited intergenerational transfers, constantly

affect the economy and influence the extent of concentration of wealth at the top. Indeed,

our conclusions highlight the importance of these redistributive mechanisms, since it is their

presence alone that ensures the stability of the economy and prevents an outcome in which

the distribution of wealth is non-stationary and grows increasingly right-skewed over time.

The rest of the paper is organized as follows. Section 2 describes the basic model in

which households face idiosyncratic investment risk and presents the main results about

the evolution of income and wealth over time. Section 3 provides several simulations that
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describe the dynamics of wealth over time under different parameterizations of the model.

Section 4 concludes. All proofs and their generalizations are provided in Appendix A, and

in Appendix B the basic model is altered and the redistributive implications of finitely-lived

households and a “joy of giving” bequest motive are discussed.

2 Model

Consider an economy that is populated by N ∈ N households that live forever. At each

point in time t ∈ [ 0,∞), each household i = 1, . . . , N solves a savings-consumption problem

that determines how much it will consume and how it will invest her savings.

2.1 Consumption and Investment

Households can invest in a risk-free asset that pays a return of r or in an individual-specific

asset that is subject to idiosyncratic risk. Uncertainty in this economy is represented by

a filtered probability space (Ω,F ,Ft, P ). We define an N -dimensional Brownian motion

B(t) = (B1(t), . . . , BN(t)), t ∈ [ 0,∞), on this probability space and assume that all stochas-

tic processes are adapted to {Ft; t ∈ [ 0,∞)}, the augmented filtration generated by B.6 For

all i = 1, . . . , N , we assume that the price of the individual-specific risky asset Pi follows a

geometric Brownian motion so that

dPi(t) = αPi(t) dt+ σPi(t) dBi(t), (1)

where Bi is a standard Brownian motion, α > r is the expected instantaneous return of

this risky asset, and σ > 0 is the standard deviation of this instantaneous return.7 All

of the Brownian motions Bi are assumed to be independent of each other. Following the

heterogeneous-agent macroeconomics literature, we assume that markets are incomplete and

hence the risk involved in these N individual-specific assets cannot be shared or pooled across

households. As a consequence, each household in the economy faces uninsurable idiosyncratic

investment risk.

6In order to simplify the notation, we shall omit many of the standard regularity conditions and technical
details involved with continuous-time stochastic processes.

7This section’s main results are easily reproduced in a setting in which the parameters α(t) and σ(t) are
time-varying and households have log preferences for consumption over time.
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Throughout their lives, households supply one unit of labor inelastically and receive

labor income equal to λ. At each point in time t, each household i = 1, . . . , N chooses to

invest a fraction ϕi(t) of its wealth wi(t) in the risky asset and chooses to consume a quantity

ci(t). We assume that households obtain utility from consumption and that they have utility

functions that feature constant relative risk aversion (CRRA), so that each household’s utility

maximization problem is given by

J(w, t) = max
ci(t),ϕi(t)

Et

[∫ ∞

t

c1−γ
i (s)

1− γ
e−ρs ds

]
s.t. dwi(s) = [rwi(s) + (α− r)ϕi(s)wi(s)− ci(s) + λ] ds+ σϕi(s)wi(s) dBi(s),

(2)

where ρ > 0 is the discount rate and γ ≥ 1 is the coefficient of relative risk aversion.

Because of the symmetry of this setup, all of the N households in the economy have the

same functional form for risky-asset demand ϕi(t) and consumption ci(t) in equilibrium. The

only factors that distinguish these choices among the households are the differential levels

of wealth for each household.

Proposition 1. For all households i = 1, . . . , N, the policy functions ci(t) and ϕi(t) are

given by

ci(t) =

(
ρ− (1− γ)r

γ
− (1− γ)(α− r)2

2γ2σ2

)(
wi(t) +

λ

r

)
, (3)

ϕi(t) =
(α− r)

(
wi(t) +

λ
r

)
wi(t)γσ2

. (4)

The optimal policy functions as given by Proposition 1 are similar to those first character-

ized by Merton (1969) (the proposition’s proof, which is also similar, is in Appendix A). The

proposition states that each household invests a quantity of wealth in its individual-specific

risky asset that is proportional to the expected instantaneous excess return of that asset,

α−r, the variance of the risky asset’s instantaneous return, σ2, and the coefficient of relative

risk aversion, γ. The intuition behind the roles of these three components of risky-asset de-

mand is standard in macroeconomics and finance. In addition to these well-known channels,

we can see that households’ ability to risklessly earn labor income throughout their lives also

increases their willingness to invest in their risky assets since ϕi(t) is increasing in λ. The

availability of this risk-free labor income makes the risk-free asset somewhat redundant and
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thus reduces the benefit of investing wealth in safe assets.

The households’ optimal choice of consumption is also highly intuitive. The proposition

states that each household’s consumption is proportional to its total wealth, which is the sum

of its physical wealth wi(t) and its discounted future labor income λ
r
. For each household,

the proportion of wealth that is consumed is increasing in the discount rate ρ, the variance

of its individual-specific risky asset’s instantaneous return σ2, and the coefficient of relative

risk aversion γ, and it is decreasing in the expected instantaneous excess return of the risky

asset α − r. As with the demand for the risky asset, the intuition behind the roles of these

components of consumption is standard.

The setup of this section’s model is purposely parsimonious. One advantage of the as-

sumption that households’ investment opportunities do not vary over time is that this makes

the optimization problem (2) easily solvable. In general, portfolio optimization problems that

involve time-varying returns or volatility present difficult challenges.8 Of course, there is a

great deal of empirical evidence that both the returns and volatility of investments vary over

time. Our goal in this paper, however, is not to present a complete and intricate model of

portfolio choice, but rather to present a simple and stylized model of an economy in which

households face idiosyncratic investment risk and there are no redistributive mechanisms.

There are many potentially promising and important extensions of this framework, such as

the inclusion of richer and more realistic investment returns, transactions costs and other

frictions, and behavioral aspects of portfolio choice.

2.2 Household Wealth Dynamics and Redistributive Mechanisms

The next step in our analysis is to characterize the dynamics of wealth for each household

in this economy in which there is uninsurable idiosyncratic investment risk. This charac-

terization allows us to describe exactly what a redistributive mechanism is, and then to

characterize the dynamic behavior of the equilibrium distribution of wealth in the absence

of such mechanisms.

Let xi(t) be the total wealth of household i = 1, . . . , N at time t, so that

xi(t) = wi(t) +
λ

r
. (5)

8For a detailed discussion of some of these difficulties and the techniques that can be used to address
them, see Campbell and Viceira (2002).
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Proposition 1 together with the households’ budget constraint implies that the dynamics of

the total wealth of household i are given by

dxi(t) =

(
r − ρ

γ
+

(1 + γ)(α− r)2

2γ2σ2

)
xi(t) dt+

(
α− r

γσ

)
xi(t) dBi(t), (6)

so that the total wealth of each household in the economy evolves according to a geomet-

ric Brownian motion. The expected instantaneous return of the households’ total wealth

processes is equal to

Λ =
r − ρ

γ
+

(1 + γ)(α− r)2

2γ2σ2
, (7)

and the instantaneous standard deviation of this return is equal to

Γ =
α− r

γσ
> 0. (8)

According to the definitions of Λ and Γ, equation (6) becomes

dxi(t) = Λxi(t) dt+ Γxi(t) dBi(t), (9)

and we can solve this explicitly for the value of each household i’s total wealth at time t,

which is given by

xi(t) = xi(0) exp

[(
Λ− 1

2
Γ2

)
t+ ΓBi(t)

]
. (10)

It is important to emphasize that equations (9) and (10) imply that all households in

the economy have the same expected growth rates of wealth with value Λ − 1
2
Γ2. This

observation means that there are neither explicit nor implicit redistributive mechanisms

present in the economy, since a redistributive mechanism is any factor that proportionally

affects wealthy and poor households differently. More precisely, a redistributive mechanism

generates an expected growth rate of wealth for wealthy households that is lower than for

poor households, which in terms of equations (9) and (10) implies that Λ− 1
2
Γ2 is lower for

wealthy households. Since each household’s expected growth rate of wealth is independent

of its current level of wealth, there are no redistributive mechanisms in this setup.
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2.3 Dynamics for the Equilibrium Distribution of Wealth

Having characterized the dynamics of total wealth for the N households in the economy,

we are ready to analyze the dynamics of the distribution of wealth. In particular, we want

to explore the issue of wealth concentration and examine the behavior of the wealthiest

households relative to the rest of the population. What happens to the share of the total

wealth in the economy that is held by the wealthiest 1% of households? What about the

wealthiest 1-5% of households, or the wealthiest single household? These questions are

answered by applying some results about the behavior of independent diffusion processes

from stochastic calculus.

Before we present these results, however, it is useful to introduce some notation. First,

let xmax(t) = max
(
x1(t), . . . , xN(t)

)
, and then let x(t) represent the total wealth in the

economy, so that x(t) = x1(t) + · · · + xN(t) ≤ Nxmax(t). Next, let θi(t) be the share of the

total wealth in the economy held by the ith household at time t, so that

θi(t) =
xi(t)

x(t)
, (11)

for i = 1, . . . , N . Note that θi(t) < 1 for all i and that θ1(t) + · · ·+ θN(t) = 1. Following the

definition of xmax(t) from above, let θmax(t) be given by

θmax(t) = max
(
θ1(t), . . . , θN(t)

)
. (12)

We are now ready to present the main theorem. The proof is in Appendix A.

Theorem 2. If households face uninsurable idiosyncratic investment risk, then the share of

the economy’s total wealth held by the wealthiest single household, θmax, satisfies

lim
T→∞

1

T

∫ T

0

θmax(t) dt = 1, a.s. (13)

Theorem 2 states that the time-averaged share of the total wealth held by the wealthiest

single household converges to one, almost surely.9 In this setting, all of the wealth in the

9This theorem can be proved in greater generality. In fact, the same limit result obtains even if the
expected growth rate Λ and the instantaneous standard deviation Γ of total wealth as given by equation (9)
are time-varying, provided certain conditions are satisfied. See the remarks after the proof of Theorem 2 in
Appendix A.
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economy eventually concentrates with the wealthiest household. The stark nature of this

result is perhaps surprising. Consider: All the households in the economy have identical

abilities in terms of their labor incomes and the expected returns of their individual-specific

risky assets, and they all have identical patience in terms of their preferences for consumption

over time. Furthermore, there is complete equality of opportunity among households, so that

the playing field is as level as possible. The implication is that it is luck alone—in the form

of high realized investment returns—that generates this extreme divergence.

It is worth noting that the existence of the time average limit in Theorem 2 does not

imply that θmax(t) itself has the same limit. In fact, the limit of θmax(t) as t → ∞ does not

exist, as shown by Proposition 3 in Appendix A. Instead, we find that although the time

average of θmax(t) tends to one, there are recurring “regime changes” in which the wealthiest

household in the economy is overtaken by another household. Regimes may last for ever

longer periods and involve ever more extreme concentrations of wealth, but they always

eventually fall.

The reason that differing investment returns can cause the economy’s wealth to concen-

trate with a single household is that there are no redistributive mechanisms in our setup.

In fact, this is the key result of the paper. In the absence of redistribution, uninsurable

idiosyncratic investment risk generates an equilibrium wealth distribution that is not sta-

tionary and becomes increasingly right-skewed over time. The unmistakeable implication

of this result is that those mechanisms that proportionately affect wealthy households and

poor households differently play a crucial stabilizing role in the economy. It does not matter

whether such redistributive mechanisms are in the form of actions undertaken by individuals

or policies implemented by the government. What matters is the presence of such mech-

anisms, since it is only this presence that prevents an unstable outcome in which a single

household eventually holds virtually all of the economy’s wealth.

Of course, in most cases some redistributive mechanisms are present in the economy.

Settings of this kind, in which households face uninsurable idiosyncratic investment risk and

there is redistribution in the form of both limited intergenerational transfers and govern-

ment tax and fiscal policies, have been the subject of recent work by Benhabib et al. (2011),

Benhabib and Zhu (2009), Gabaix (2009), and Zhu (2010). These authors generate equilib-

rium distributions of wealth that are Pareto and closely match the shape of the U.S. wealth

distribution. Similarly, Fernholz (2014) derives related results analytically by extending our
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continuous-time setting to include redistribution and using recent results from mathematical

finance to characterize the stationary Pareto-like equilibrium distribution of wealth.10 In

this paper, however, the goal is to investigate the dynamics of the economy’s total wealth in

the absence of redistributive mechanisms. This setup is a natural benchmark. Indeed, only

by analyzing the behavior of an economy without redistributive mechanisms are we able to

uncover the vital stabilizing role that those mechanisms play.

In addition to assuming that there is no redistribution, our setup assumes that house-

holds have identical abilities and patience and that there is complete equality of opportunity

in the economy. These latter assumptions are clearly not realistic. In the real world, house-

holds earn different labor incomes, have different expected returns and variances for their

investments, and have different preferences for consumption over time. It is clear, however,

that persistent differences in abilities or patience will lead to the same instability as in The-

orem 2. Indeed, Becker (1980) showed that different preferences for consumption over time

alone leads to full concentration of wealth with a single household.11 What is surprising is

that equality of opportunities, abilities, and patience is not sufficient to ensure stability.

Our results show that, in the absence of perfect insurance and complete markets, the

distribution of wealth is unstable without some form of redistribution.12 While this redistri-

bution can occur in many different ways, one obvious example is redistributive government

tax and fiscal policies. Indeed, this section’s conclusions suggest an important role for re-

distributive income and estate taxes as a mechanism that counters the natural tendency of

wealth to concentrate at the top. More research that examines the potential for such policies

to mitigate income and wealth inequality and compares these benefits with the well-known

costs of taxation is warranted.

10These mathematical finance results, which are closely related to those we use in this paper, are from
Fernholz (2002), Fernholz and Karatzas (2009), and Ichiba et al. (2011).

11A simple alternative specification of our model extends this result. Rather than assume that one house-
hold’s discount rate is larger than other households’ discount rates as Becker (1980) does, we could alter
our setup so that all households’ discount rates follow identical geometric Brownian motion processes (same
drift and standard deviation, but independent realizations, just like equation (1) above). In this case, even
if all households’ realized investment returns are identical, we would still get divergence as in Theorem 2.

12Besides the obvious challenges posed by permanently increasing wealth inequality, a more subtle problem
involves the link between financial crises and inequality. See Kumhof et al. (2013) and Rajan (2010).
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3 Simulations

Given the sharpness of our results, it is helpful to directly observe the dynamics of an econ-

omy in which households face idiosyncratic investment risk and there are no redistributive

mechanisms. In this section, we present simulations that correspond to several different pa-

rameterizations of the previous section’s model. This exercise provides us with a number of

important observations, including the positive relationship between households’ exposure to

uninsurable idiosyncratic investment risk and the rate at which the distribution of wealth

becomes more right-skewed over time.

We consider a wide range of parameters for the economy. However, in all of this sec-

tion’s parameterizations, we set the total number of households in the economy N equal to

1,000,000 and we assume that all households hold the same amount of wealth at time zero.13

One implication of the setup of the model is that all households’ expected instantaneous

returns for total wealth are equal. Recall that equation (9) from the previous section states

that

dxi(t) = Λxi(t) dt+ Γxi(t) dBi(t), (14)

which implies that for each household i = 1, . . . , N , this expected instantaneous return

is simply equal to Λ as given by equation (7) above. An important consequence of this

fact is that the dynamics of the economy’s distribution of wealth over time are completely

unaffected by the expected return Λ. Instead, these dynamics are entirely the result of

households’ different realized rates of investment return as represented by the realizations of

the independent Brownian motions in equation (14). As a consequence, then, the distribution

of wealth is greatly affected by the standard deviation of these rates of return, which by

equation (8), is given by

Γ =
α− r

γσ
. (15)

The endogenous value of Γ measures the extent of households’ exposure to uninsurable

idiosyncratic investment risk and hence determines the pace at which wealth disperses across

households over time.

The fact that only the extent of households’ exposure to idiosyncratic risk affects the

13In general, we find that changing the number of households in the economy has little effect on the
outcome of the simulations. Increasing the number of households makes the plots smoother (at the cost of
greater computational intensity), but does not appear to change their overall shape. This is especially true
of the plots showing the shares of wealth held by the top 1%, 1-5%, and 5-10%.
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dynamics of the distribution of wealth over time simplifies this section’s simulation exercise.

Rather than depending on all of the model’s parameters, these dynamics instead depend only

on those parameters that determine the extent of this exposure Γ. According to equation (15)

above, then, there are only four parameters that are relevant: the coefficient of relative risk

aversion γ, the expected instantaneous return of the risky asset α, the standard deviation

of the instantaneous return of the risky asset σ, and the return of the risk-free asset r.14

Consistent with the standard theory of portfolio choice, the model predicts that households’

exposure to idiosyncratic risk increases as α increases and decreases as γ, r, and σ increase.

Since it is only the quantity Γ that affects the dynamics of the distribution of wealth over

time, we only need to choose values for those four parameters that affect this quantity. In

the benchmark parameterization, we set the coefficient of relative risk aversion γ = 2 and the

risk-free rate of return r = 0.03, both values that are consistent with the macroeconomics

and finance literature. Parameterizing the returns of households’ idiosyncratic investments

is more difficult. Both Flavin and Yamashita (2002) and Moskowitz and Vissing-Jorgensen

(2002) provide estimates of different components of these idiosyncratic returns, with the

former focused on the return of housing and the latter focused on the return of private

equity. These analyses led Angeletos (2007) to establish a basic calibration in which the

expected investment return is approximately 7% with a standard deviation of 20%. In our

benchmark parameterization, we adopt these same values so that α = 7% and σ = 20%,

which together with the values for γ and r implies that Γ = 0.1 in this case.15

In Figure 1 below, we plot the shares of the economy’s total wealth held by the wealthiest

1% of households (solid black line), the wealthiest 1-5% of households (dotted red line),

and the wealthiest 5-10% of households (dashed green line) in a simulation of the previous

section’s model that corresponds to our benchmark parameterization. The figure shows

the dynamics of the distribution of wealth as described by Theorem 2. Starting from a

position in which all households hold the same amount of wealth, the economy gradually

evolves as wealth concentrates at the top so that within 500 years approximately half of

the economy’s total wealth is held by the wealthiest 1% of households, and after 1000 years

that share increases to nearly 80%. Within 300 years, the economy reaches a position that

14There are two other parameters in the model, both of which have no effect on the dynamics of the
distribution of wealth over time. Those are the households’ discount rate ρ and their labor income λ.

15Because it is only the value of Γ that matters for the simulations, the benchmark parameterization can
be reinterpreted as any combination of the parameters α, γ, r, and σ that yields Γ = 0.1. In fact, all of this
section’s simulations can be reinterpreted in this manner.
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resembles the United States in 2001—the wealthiest 1% of households hold 33% of total

wealth, while the wealthiest 1-5% and 5-10% of households hold, respectively, 26% and 12%

of total wealth.16

To examine how the extent of households’ exposure to idiosyncratic risk affects the dy-

namics of the distribution of wealth over time, in Figure 2 we alter the parameters of the

model so that Γ = 0.05 and Γ = 0.2 and then plot the same shares of wealth as in Figure

1. The shares of wealth over time for Γ = 0.05 and Γ = 0.2 are plotted in the top and

bottom panels of Figure 2, respectively. The parameterization with Γ = 0.05 might corre-

spond to an economy in which γ = 4 (the other parameters are unchanged) and households

are significantly more risk-averse than in the benchmark parameterization. Similarly, the

parameterization with Γ = 0.2 might correspond to an economy in which σ = 10% and the

standard deviation for the return of investment is lower than in the benchmark parameter-

ization. Of course, any combination of the parameters α, γ, r, and σ that yields the same

value of Γ will generate the same predictions for the model.

If Γ = 0.05 as in the top panel of Figure 2, households endogenously choose less exposure

to uninsurable idiosyncratic investment risk and this causes the distribution of wealth to

become increasingly right-skewed over time much more slowly than in the benchmark pa-

rameterization with Γ = 0.1 (shown in the middle panel). The economy starts in a position

in which all households hold the same amount of wealth and after 1000 years the wealthiest

1% of households hold just under 25% of the economy’s total wealth, less than the share of

the wealthiest 1-5% of households. Clearly, this outcome is quite different from the bench-

mark case. Together, the top two panels of Figure 2 show that a decrease in the extent of

households’ exposure to idiosyncratic risk causes a decrease in the rate at which the econ-

omy’s total wealth concentrates at the top. Given this observation, we should expect that

an increase in this exposure will cause an increase in the pace of wealth concentration over

time.

This conjecture is examined in the bottom panel of Figure 2. In this alternate pa-

rameterization Γ = 0.2, so households endogenously choose more exposure to idiosyncratic

investment risk which causes the distribution of wealth to become increasingly right-skewed

over time much more quickly than in the benchmark parameterization. Starting from a po-

sition in which all households hold the same amount of wealth, the economy evolves so that

16These data are from Wolff (2012).
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within 600 years practically all of the economy’s total wealth is held by the wealthiest 1% of

households, with none held by the remaining 99% of households. Furthermore, we can see

from this bottom panel that within one century the model predicts that more than one third

of the economy’s total wealth will be held by the wealthiest 1% of households. This pace

of increasing right-skewness over time far exceeds what is observed in the top two panels of

Figure 2.

Figure 2 demonstrates one of the most interesting and significant properties of the model

we present in this paper. It is the extent of households’ exposure to uninsurable idiosyn-

cratic investment risk, measured by the quantity Γ, that determines the pace at which the

economy’s total wealth concentrates at the top. Consider the evolution of the distribution

of wealth over a period of 200 years. Our simulations show that as the value of Γ fluctuates

between 0.05 and 0.2, the share of the economy’s total wealth held by the wealthiest 1% of

households after 200 years fluctuates between 5% and 70%. These results indicate that the

rate at which the convergence described by Theorem 2 occurs varies significantly depending

upon the value of Γ.

Importantly, the extent of households’ exposure to idiosyncratic risk as measured by Γ is

endogenous in our model. This value is a function of households’ risk aversion γ, the expected

excess return of the risky asset relative to the risk-free asset α−r, and the standard deviation

of the return of this risky asset σ. Consistent with the standard theory of portfolio choice,

the model predicts that households’ exposure to idiosyncratic risk increases in the excess

return and decreases in risk aversion and the standard deviation. Of course, the existence

of uninsurable risk is a consequence of market incompleteness, and so these results point

to a close relationship between the extent of market incompleteness and inequality. This

conclusion, which is broadly consistent with the conclusions of Benhabib et al. (2011) and

Zhu (2010), gives a renewed significance to theoretical and empirical studies of the causes

and consequences of incomplete markets. Indeed, if market incompleteness and idiosyn-

cratic investment risk are major causes of income inequality, then the fact that markets are

incomplete is much more than just an interesting and potentially surprising observation. In

fact, such incompleteness may be a major cause of increasing income and wealth inequality

as individuals who repeatedly experience high realized rates of return on their investments

accumulate ever-larger shares of wealth. More research is clearly warranted in this direction.

The next step in this section’s simulation exercise is to analyze how the Gini coefficient
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of our economy evolves over time. By Theorem 2, we know that the Gini coefficient will

eventually converge to 1.0, but we do not know how fast such a convergence will occur and

how this rate of convergence is influenced by the parameters of the model. In Figure 3, we

plot the evolution of the Gini coefficient over time for the benchmark parameterization in

which Γ = 0.1 (the solid black line). Starting from a position in which all households hold

the same amount of wealth and the Gini coefficient is equal to 0, the economy evolves so

that within 400 years the Gini coefficient is just above 0.8 and approximately equal to the

true value in both the United States and the world in 2000. Figure 3 also demonstrates that

the Gini coefficient grows rapidly at first but eventually slows down as it approaches a value

of one. According to the figure, the value of the coefficient jumps from 0 to 0.5 within 100

years but then only increases up to 0.9 over the next 500 years.

The positive relationship between the extent of households’ exposure to idiosyncratic

risk and the rate at which wealth concentrates at the top as shown by Figure 2 suggests

that a similar pattern should emerge in the dynamics of the economy’s Gini coefficient

over time. To see that this is indeed the case, in Figure 3 we also include plots of the

evolution of the Gini coefficient of the economy over time for the low-exposure (Γ = 0.05,

represented by the dotted red line) and high-exposure (Γ = 0.2, represented by the dashed

green line) parameterizations described above. According to the figure, the low-exposure

parameterization of our model generates a Gini coefficient approximately equal to 0.5 after

400 years. Furthermore, the coefficient in this case does not even reach the previously

observed value of 0.8 within 1000 years. The high-exposure parameterization of our model,

in contrast, generates a Gini coefficient around 0.8 in less than 100 years and close to 1.0

within only 200 years. This represents a very rapid concentration of wealth at the top.

As before, these results highlight just how important the extent of households’ exposure

to idiosyncratic investment risk is when determining both how rapidly wealth inequality

increases over time and how rapidly the convergence described by Theorem 2 occurs.

Figures 1-3 are all roughly consistent with the predictions of Section 2 and Theorem 2.

However, the theorem states a result that is substantially stronger than simply an increasing

share of wealth held by the wealthiest 1% of households or an increasing Gini coefficient over

time. The theorem states that a single household will eventually hold virtually all of the

economy’s wealth. This extreme scenario represents the most unequal distribution of wealth

in the economy that is possible. In Figure 4 below, we plot the share of total wealth held
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by the single wealthiest household in the economy for the high-exposure parameterization

in which Γ = 0.2. The extreme concentration of wealth with a single household is an event

that takes a long time to occur, and so we plot the evolution of this household’s share of

wealth over a 10,000 year period.

From the figure, we see that in a little over 1000 years, practically all of the economy’s

wealth is held by a single household, but this outcome lasts less than a few hundred years

as other households in the economy realize high rates of return on their investments and

are able to increase their shares of the economy’s total wealth. Figure 4 demonstrates that

changes in the share of wealth held by the wealthiest household in the economy are frequent

and large. Indeed, approximately 500 years after holding all of the economy’s total wealth,

the wealthiest household in the economy holds less than 20% of this total wealth. Such

large fluctuations are common throughout Figure 4, although virtually all of the economy’s

wealth is held by a single household for nearly all of a period of roughly 3000 years. This

extended period of complete wealth concentration at the top is consistent with the figure’s

overall trend of increasing concentration, volatile as it is.17 Notably, the substantial variation

that is displayed in Figure 4 contrasts with the smooth and stable behavior of Figures 1-

3. This demonstrates that the total and permanent concentration of the economy’s wealth

in our setup only occurs after a long period of sizable fluctuations at the very top of the

wealth distribution. Indeed, while there is much variation in the share of wealth held by

the wealthiest household in the economy, there is practically no variation in the share of

wealth held by the wealthiest 1% of households (which corresponds to the wealthiest 10,000

households in the economy).

4 Conclusion

In this paper, we have theoretically examined the dynamics of the distribution of wealth

in an economy in which infinitely-lived households face idiosyncratic investment risk and

make optimal decisions about how much to consume and how to invest. A central feature of

our setup is that neither explicit nor implicit redistributive mechanisms are present in the

economy. Furthermore, all households are assumed to be equally patient and have identical

abilities. In this setting, we show that the equilibrium distribution of wealth is not stationary

17The high degree of volatility that is present in Figure 4 is readily observed after a number of simulations.
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and prove that it becomes increasingly right-skewed over time and gradually tends to a limit

in which wealth is fully concentrated at the top. This extreme divergence is driven entirely

by luck in the form of high realized investment returns.

We consider a number of different parameterizations of our model and present the corre-

sponding simulations. This exercise reveals a link between the extent of households’ exposure

to idiosyncratic investment risk and the pace at which the distribution of wealth becomes in-

creasingly right-skewed over time. The greater the households’ exposure to idiosyncratic risk,

the faster the economy’s total wealth accumulates with the wealthiest single household. This

exposure is endogenous in our setup. In particular, it increases as the expected excess return

of the households’ risky investments increases and decreases as both the variance of these

returns and the households’ risk-aversion increase. Given the important role of incomplete

markets and uninsurable risk in our conclusions, more research in this direction—both theo-

retically, exploring the endogenous causes of incomplete markets, and empirically, examining

which risks do not become insured—may yield significant insights.

The main implication of our analysis is that in the absence of complete markets and

perfect insurance, redistributive mechanisms play a crucial stabilizing role in the economy.

What matters is not whether such redistributive mechanisms come in the form of actions

undertaken by individuals or policies implemented by the government, but rather whether

or not a sufficient level of redistribution is achieved. This conclusion suggests that there

is a potentially important role for redistributive government tax and fiscal polices in an

economy. Surely, further examining the stabilizing role of such policies and contrasting this

benefit with the traditional distortionary costs of taxation should be an objective for future

research.

A Proofs

This appendix presents the proofs of Propositions 1 and 3 and Theorem 2.

Proof of Proposition 1. Under suitable regularity conditions, Itô’s Lemma implies that
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the Hamilton-Jacobi-Bellman equation for household i’s maximization problem is given by

0 = max
ci(t),ϕi(t)

{
e−ρt c

1−γ
i (t)

1− γ
+ Jw(w, t)[rwi(t) + (α− r)ϕi(t)wi(t)− ci(t) + λ]

+ Jt(w, t) +
1

2
Jww(w, t)ϕ

2
i (t)σ

2w2
i (t)

}
,

where Jw(w, t) and Jt(w, t) denote respectively the partial derivatives of the value function

with respect to wealth w and time t. The first-order conditions for this maximization problem

are therefore

c−γ
i (t) = eρtJw(w, t), (16)

Jw(w, t)(α− r)wi(t) = −Jww(w, t)ϕi(t)σ
2w2

i (t). (17)

The next step is to guess and verify the form of the value function J(w, t). We guess that

J(w, t) = e−ρt k

1− γ

(
wi(t) +

λ

r

)1−γ

, (18)

where k is a positive constant, so that the first-order conditions (16) and (17) imply that

ci(t) = k−
1
γ

(
wi(t) +

λ

r

)
, (19)

ϕi(t) =
(α− r)

(
wi(t) +

λ
r

)
wi(t)γσ2

. (20)

Note that the expression for the optimal holdings of the risky asset ϕi(t) given by equation

(20) confirms equation (4) from Proposition 1.

The last step of this proof is to solve for the positive constant k that is both part of the

value function and the optimal level of consumption and to confirm that the value function

from (18) does indeed satisfy the Hamilton-Jacobi-Bellman equation from above. This is

accomplished by substituting the optimal levels of consumption and investment as given by
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equations (19) and (20) into the Hamilton-Jacobi-Bellman equation. This yields

0 = e−ρt k
1− 1

γ

1− γ

(
wi(t) +

λ

r

)1−γ

+ e−ρtk

(
wi(t) +

λ

r

)1−γ [
r +

(α− r)2

γσ2
− k−

1
γ

]

− 1

2
e−ρtγk

(
wi(t) +

λ

r

)1−γ
(α− r)2

γ2σ2
− ρe−ρt k

1− γ

(
wi(t) +

λ

r

)1−γ

,

which, after simplifying, implies that the equality holds with

k−
1
γ =

ρ− (1− γ)r

γ
− (1− γ)(α− r)2

2γ2σ2
.

If we substitute this expression into equation (19) above, then we get that optimal consump-

tion ci(t) is given by equation (3) from Proposition 1, completing the proof.

Proof of Theorem 2. According to Proposition 1 and equation (9), the total wealth of

household i, denoted by xi, evolves according to

dxi(t) = Λxi(t) dt+ Γxi(t) dBi(t), (21)

which, by Itô’s Lemma, becomes

d log xi(t) =

(
Λ− 1

2
Γ2

)
dt+ Γ dBi(t). (22)

Without loss of generality, we can rescale the above stochastic process for log-wealth so that

Λ− 1
2
Γ2 = 0, and we can make a time change so that Γ = 1. With these changes, equation

(22) reduces to

d log xi(t) = dBi(t), (23)

and (21) can be written as
dxi(t)

xi(t)
=

1

2
dt+ dBi(t). (24)

If we assume initial values xi(0) > 0, for i = 1, . . . , N , then (23) results in

log xi(t) = Bi(t) + log xi(0),
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or

xi(t) = xi(0) exp(Bi(t)).

Let us now consider the dynamics of the processes xi. For 1 ≤ i ≤ N , the strong law of

large numbers for Brownian motion (see Karatzas and Shreve, 1991, Problem 2.9.3) implies

that

lim
t→∞

log xi(t)

t
= lim

t→∞

Bi(t)

t
= 0, a.s.,

so the same limit holds for log xmax(t). Since

log x1(t) ≤ log x(t) = log
(
x1(t) + · · ·+ xN(t)

)
≤ logN + log xmax(t),

we also have

lim
t→∞

log x(t)

t
= 0, a.s. (25)

By Itô’s Lemma we have

dx(t) = d exp(log x(t)) = x(t) d log x(t) +
x(t)

2
d⟨log x⟩t, a.s.,

where ⟨log x⟩t denotes the quadratic variation of log x up to time t, and this is equivalent to

dx(t)

x(t)
= d log x(t) +

1

2
d⟨log x⟩t, a.s. (26)

Since

dx(t) =
N∑
i=1

dxi(t),

we have

dx(t)

x(t)
=

N∑
i=1

xi(t)

x(t)

dxi(t)

xi(t)

=
N∑
i=1

θi(t)
dxi(t)

xi(t)
, (27)
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with θi(t) = xi(t)/x(t) as in (11). From (24) and (27), it follows that

dx(t)

x(t)
=

N∑
i=1

θi(t)dBi(t) +
1

2
dt, (28)

so (26) implies that

d log x(t) =
N∑
i=1

θi(t)dBi(t) +
1

2
dt− 1

2
d⟨log x⟩t, a.s. (29)

Since the Bi are independent, we have

d⟨log x⟩t =
N∑
i=1

θ2i (t) dt, a.s.,

which means that (29) can be expressed as

d log x(t) =
N∑
i=1

θi(t)dBi(t) +
1

2

(
1−

N∑
i=1

θ2i (t)
)
dt, a.s. (30)

All the proportions θi are adapted and bounded, so the process

M(t) =

∫ t

0

N∑
i=1

θi(t) dBi(t)

is a local martingale with quadratic variation

⟨M⟩t =
∫ t

0

N∑
i=1

θ2i (s) ds, a.s.,

and with
1

N
t ≤ ⟨M⟩t ≤ t, a.s. (31)

By the time-change theorem for martingales (see Karatzas and Shreve, 1991, Theorem 3.4.6),

there exists a Brownian motion B′ such that

M(t) = B′(⟨M⟩t), a.s.,
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for t ∈ [ 0,∞). We now have

lim
T→∞

1

T

∫ T

0

N∑
i=1

θi(t)dBi(t) dt = lim
T→∞

M(T )

T
= lim

T→∞

B′(⟨M⟩T )
⟨M⟩T

⟨M⟩T
T

= 0 a.s.,

by (31) and the strong law of large numbers for Brownian motion. Hence, from (25) and

(30) we can conclude that

lim
T→∞

1

T

∫ T

0

(
1−

N∑
i=1

θ2i (t)
)
dt = 0, a.s. (32)

Now,

1−
N∑
i=1

θ2i (t) =
N∑
i=1

(
θi(t)− θ2i (t)

)
=

N∑
i=1

θi(t)
(
1− θi(t)

)
≥ 1− θmax(t) ≥ 0,

so (32) implies that

lim
T→∞

1

T

∫ T

0

(
1− θmax(t)

)
dt = 0, a.s.,

which is equivalent to equation (13).

Remark. Theorem 2 can be proved in greater generality. Suppose that the total wealth

processes for the N households in the economy are a system of continuous semimartingales

x1, . . . , xN such that for i = 1, . . . , N ,

d log xi(t) = β(t) dt+
d∑

ν=1

ξiν(t) dBν(t),

where (B1, . . . , Bd) is a d-dimensional Brownian motion with d ≥ N , and β and ξiν are

measurable and adapted to the Brownian filtration, with β locally L1 and ξiν locally L2. For

1 ≤ i, j ≤ N , we define the covariance processes by

sij(t) ≡
d∑

ν=1

ξiν(t)ξjν(t),
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and let us assume that the sij satisfy

lim
t→∞

log log t

t
sij(t) = 0, a.s.,

for all i and j, and that the covariance matrix (sij(·)){1≤i,j≤N} is strongly non-degenerate,

i.e., it is positive definite with eigenvalues uniformly bounded away from zero, almost surely.

Under these conditions,

lim
T→∞

1

T

∫ T

0

θmax(t) dt = 1,

as in equation (13) from Theorem 2. A proof of this result can be found in Fernholz and

Karatzas (2009), Section 5.

Remark. Another generalization of Theorem 2 is possible if the total wealth processes for

the N households in the economy are a system of continuous semimartingales x1, . . . , xN

such that for i = 1, . . . , N ,

d log xi(t) = zi(t) dt+ dBi(t),

where zi is an adapted process that satisfies

lim
T→∞

1

T

∫ T

0

θi(t)zi(t) dt ≥ 0, a.s. (33)

These dynamics for the total wealth of the N households corresponds to an extension of the

benchmark model in which the households have different time-varying abilities, as measured

by the average growth rate of total wealth. The condition (33) states that on average over

time those households with greater ability hold more wealth than those households with less

ability, a restriction that seems entirely reasonable. Under the stated conditions, we once

again have that

lim
T→∞

1

T

∫ T

0

θmax(t) dt = 1, a.s.,

as in Theorem 2. The proof of this result is almost identical to the proof of the theorem

itself. The key difference is that equation (28) now becomes

dx(t)

x(t)
=

N∑
i=1

θi(t)dBi(t) +
1

2
dt+

N∑
i=1

θi(t)zi(t) dt,
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which by the same arguments as in the proof of the theorem implies that

d log x(t) =
N∑
i=1

θi(t)dBi(t) +
1

2

(
1−

N∑
i=1

θ2i (t)

)
dt+

N∑
i=1

θi(t)zi(t) dt, a.s. (34)

Following the proof of the theorem once again, we have by equation (34) that

lim
T→∞

1

T

∫ T

0

1

2

(
1−

N∑
i=1

θ2i (t)

)
dt = − lim

T→∞

1

T

∫ T

0

N∑
i=1

θi(t)zi(t) dt ≤ 0, a.s., (35)

which is stronger than what is needed to reach the desired conclusion.

Proposition 3. The maximum proportion process θmax satisfies

lim sup
t→∞

θmax(t) = 1, a.s., (36)

and

lim inf
t→∞

θmax(t) ≤
1

2
, a.s. (37)

Proof. The limit (36) follows immediately from Theorem 2.2 and the fact that θmax(t) < 1

for all t ≥ 0.

Since we have the limit in (36), there exist almost surely arbitrarily large t0 > 0 such

that θmax(t0) > 1/2. Suppose that θmax(t0) = θi(t0), so xmax(t0) = xi(t0). For any j ̸= i,

1 ≤ j ≤ N , the process v defined for t ≥ 0 by

v(t) =
1√
2Γ

(
log xi(t)− log xj(t)

)
is a Brownian motion, so there almost surely exists a t1 > t0 such that v(t1) = 0. In this

case xi(t1) = xj(t1), so θi(t1) < 1/2. The process θi is almost surely continuous, so there

exists a smallest T > t0 such that θi(T ) = 1/2. If θi(t) > 1/2, then θi(t) = θmax(t), so T is

also the smallest T > t0 such that θmax(T ) = 1/2. Since t0 was arbitrarily large, and T > t0,

(37) follows.
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B Discussion: Intergenerational Transfers and Redis-

tributive Mechanisms

In this appendix, we examine the implications of different assumptions about intergener-

ational transfers for our results about the instability of the distribution of wealth in the

presence of idiosyncratic investment risk and no redistributive mechanisms. In particular,

we alter the main model of Section 2 so that households have finite lifespans and “joy of

giving” bequest motives in a manner that is similar to Zhu (2010). The main result is that

intergenerational transfers in this setting are an implicit redistributive mechanism only if

households receive positive riskless labor incomes and the intensity of their bequest motives

is sufficiently low. Furthermore, we show that the size of intergenerational transfers alone

is essentially irrelevant to the stability of the distribution of wealth. Instead, stability relies

on a subtle interaction between positive discounted labor incomes and limited growth of

household wealth.

Consider an economy that is identical to the setup from Section 2, except that now we

assume that the economy is populated by N ∈ N dynastic households. Each household lives

only for a time of length T < ∞, and then at the end of its life passes on any remaining

wealth to one child who starts its life at that instant in time. Just like their preferences

for consumption, households have a preference for leaving bequests to their children that

features constant relative risk aversion (CRRA). The utility maximization problem for each

household i = 1, . . . , N born at time s ∈ {0, T, 2T, . . .} is given by

J(w, s, t) = max
ci(s,t),ϕi(s,t)

Et

[∫ T

t

c1−γ
i (s, v)

1− γ
e−ρ(v−t) dv + χ

w1−γ
i (s, T )

1− γ
e−ρ(T−t)

]
s.t. dwi(s, v) = [rwi(s, v) + (α− r)ϕi(s, v)wi(s, v)− ci(s, v) + λ] dv + σϕi(s, v)wi(s, v) dBi(v),

where 0 ≤ t < T and the intensity of households’ bequest motives is parameterized by χ > 0.

All other parameters are as in Section 2. Note that there are no explicit redistributive govern-

ment tax or fiscal policies in this altered setup. Before describing the households’ optimal

risky-asset demand ϕi(s, t) and consumption ci(s, t), it is useful to denote a household’s

time-discounted future lifetime labor income by

h(t) =
1− e−r(T−t)

r
λ. (38)
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Proposition 4. In this altered setup, for all households i = 1, . . . , N , the policy functions

ci(s, t) and ϕi(s, t) are given by

ci(s, t) =

(
eη(T−t) − 1

η
+ χ

1
γ eη(T−t)

)−1

(wi(s, t) + h(t)) , (39)

ϕi(s, t) =
(α− r) (wi(s, t) + h(t))

wi(s, t)γσ2
, (40)

where

η =
(1− γ)r − ρ

γ
+

(1− γ)(α− r)2

2γ2σ2
. (41)

Proof. Under suitable regularity conditions, Itô’s Lemma implies that the Hamilton-Jacobi-

Bellman equation for household i’s maximization problem is given by

0 = max
ci(s,t),ϕi(s,t)

{
e−ρt c

1−γ
i (s, t)

1− γ
+ Jw(w, s, t) [rwi(s, t) + (α− r)ϕi(s, t)wi(s, t)− ci(s, t) + λ]

+ Jt(w, s, t) +
1

2
Jww(w, s, t)ϕ

2
i (s, t)σ

2w2
i (s, t)

}
,

where Jw(w, s, t) and Jt(w, s, t) denote respectively the partial derivatives of the value func-

tion with respect to wealth w and time t. The first-order conditions for this maximization

problem are therefore

c−γ(s, t) = eρtJw(w, s, t), (42)

Jw(w, s, t)(α− r)wi(s, t) = −Jww(w, s, t)ϕi(s, t)σ
2w2

i (s, t). (43)

The next step is to determine the form of the value function J(w, s, t). Suppose that

J(w, s, t) = e−ρta(t)
(wi(s, t) + h(t))1−γ

1− γ
, (44)

where a(t) is a positive function of t. The first-order conditions (42) and (43) therefore imply

that

ci(s, t) = a−
1
γ (t) (wi(s, t) + h(t)) , (45)

ϕi(s, t) =
(α− r) (wi(s, t) + h(t))

wi(s, t)γσ2
. (46)
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Note that the expression for the optimal holdings of the risky asset ϕi(s, t) given by equation

(46) confirms equation (40) from above.

The last step of this proof is to solve for the function a(t) that is both part of the

value function and the optimal level of consumption and to confirm that the value function

from (44) does indeed satisfy the Hamilton-Jacobi-Bellman equation from above. This is

accomplished by substituting the optimal levels of consumption and investment as given by

equations (45) and (46) into the Hamilton-Jacobi-Bellman equation. This yields

0 =
a1−

1
γ (t)

1− γ
(wi(s, t) + h(t))1−γ + a(t) (wi(s, t) + h(t))1−γ

[
r +

(α− r)2

γσ2
− a−

1
γ (t)

]
+

ȧ(t)

1− γ
(wi(s, t) + h(t))1−γ − 1

2
a(t)

(α− r)2

γσ2
(wi(s, t) + h(t))1−γ − ρ

a(t)

1− γ
(wi(s, t) + h(t))1−γ ,

which, after simplifying, implies that

0 =
1

γ
a

1
γ
−1(t)ȧ(t) + ηa

1
γ (t) + 1, (47)

where η is given by equation (41) above. We can use the boundary condition a(T ) = χ to

solve equation (47). This yields the expression

a(t) =

(
eη(T−t) − 1

η
+ χ

1
γ eη(T−t)

)γ

,

which after substituting into equation (45) above, confirms that optimal consumption ci(s, t)

is given by equation (39).

If, as in equation 5 above, we define xi(s, t) as the total wealth of household i born at

time s ∈ {0, T, 2T, . . .}, where 0 ≤ t < T then we have xi(s, t) = wi(s, t) + h(t). According

to Proposition 4, the dynamics of the total wealth of household i are given by

dxi(s, t) =

(
r +

(α− r)2

γσ2
−
[
eη(T−t) − 1

η
+ χ

1
γ eη(T−t)

]−1
)
xi(s, t) dt

+

(
α− r

γσ

)
xi(s, t) dBi(s+ t).
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After a few manipulations, it can be shown that these dynamics imply that

xi(s, t) = xi(s, 0)


(
1 + ηχ

1
γ

)
eη(T−t) − 1(

1 + ηχ
1
γ

)
eηT − 1


exp

[(
r − ρ

γ
+

(α− r)2

2γσ2

)
t+

(
α− r

γσ

)
(Bi(s+ t)−Bi(s))

]
.

(48)

Note that xi(s, 0) = xi(s− T, T ) + h(0) by definition, so it follows from equation (48) that

xi(s, 0) = xi(s− T, 0)

 ηχ
1
γ(

1 + ηχ
1
γ

)
eηT − 1


exp

[(
r − ρ

γ
+

(α− r)2

2γσ2

)
T +

(
α− r

γσ

)
(Bi(s)−Bi(s− T ))

]
+ h(0).

(49)

For all i = 1, . . . , N , let xi(s+ t) denote the total wealth of dynastic household i at time

s + t, where s ∈ {0, T, 2T, . . .} and 0 ≤ t < T . Combining equations (48) and (49) from

above, it is not difficult to show that

xi(s+ t) = wi(0)ψ
s/T (T )ψ(t) exp

[(
r − ρ

γ
+

(α− r)2

2γσ2

)
(s+ t) +

(
α− r

γσ

)
Bi(s+ t)

]
+ h(0)ψ(t) exp

[(
r − ρ

γ
+

(α− r)2

2γσ2

)
t+

(
α− r

γσ

)
(Bi(s+ t)−Bi(s))

]
(
1 + ψ(T ) exp

[(
r − ρ

γ
+

(α− r)2

2γσ2

)
T +

(
α− r

γσ

)
(Bi(s)−Bi(s− T ))

]
+ ψ2(T ) exp

[(
r − ρ

γ
+

(α− r)2

2γσ2

)
2T +

(
α− r

γσ

)
(Bi(s)−Bi(s− 2T ))

]
+ · · ·+ ψs/T (T ) exp

[(
r − ρ

γ
+

(α− r)2

2γσ2

)
s+

(
α− r

γσ

)
Bi(s)

])
,

(50)

where

ψ(t) =

(
1 + ηχ

1
γ

)
eη(T−t) − 1(

1 + ηχ
1
γ

)
eηT − 1

. (51)

Proposition 5. There exists a finite threshold χ̂ > 0 such that if either χ ≥ χ̂ or h(0) = 0,

then we cannot conclude that the distribution of wealth in this economy with overlapping

generations and intergenerational transfers is stationary.

31



Proof. Suppose first that h(0) = 0. In this case, equation (50) implies that the total wealth

of dynastic household i at time s+ t is given by

xi(s+ t) = xi(0)ψ
s/T (T )ψ(t) exp

[(
r − ρ

γ
+

(α− r)2

2γσ2

)
(s+ t) +

(
α− r

γσ

)
Bi(s+ t)

]
,

since xi(0) = wi(0) whenever h(0) = 0. Of course, this implies that the dynamics of the

process xi are given by

dxi(s+ t) =

(
r +

(α− r)2

γσ2
−
[
eη(T−t) − 1

η
+ χ

1
γ eη(T−t)

]−1
)
xi(s+ t) dt

+

(
α− r

γσ

)
xi(s+ t) dBi(s+ t),

where s ∈ {0, T, 2T, . . .} and 0 ≤ t < T . The two remarks in Appendix A thus imply that

the distribution of wealth is not stationary in this case, but instead becomes increasingly

concentrated over time as in equation (13) from Theorem 2 above.

The next step is to consider the dynamics of wealth over time in the limit as χ → ∞.

In order to show that these dynamics lead to a non-stationary distribution of wealth, it

is necessary to examine the wealth accumulation process across generations. For all i =

1, . . . , N and n ≥ 1, let x̂in be the wealth of the newborn n-th generation household i. Note

that x̂in = xi(s+0) and x̂in+1 = xi(s+T ), where s = (n−1)T . It follows, then, by equations

(50) and (51), that

x̂in+1 = ϕnx̂in + h(0), (52)

where ϕn is a sequence of random variables such that for all n ≥ 1,

ϕn =

 ηχ
1
γ(

1 + ηχ
1
γ

)
eηT − 1


exp

[(
r − ρ

γ
+

(α− r)2

2γσ2

)
T +

(
α− r

γσ

)
(Bi(nT )−Bi((n− 1)T ))

]
.

(53)

Because of the independence of Brownian motion increments, it follows that the random

sequence ϕn is i.i.d. In this case, both Benhabib et al. (2011) and Zhu (2010) have shown,

using results from Goldie (1991) and Kesten (1973), that the equilibrium distribution of

wealth (as characterized by each generation of newborn households’ endowments of wealth
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x̂in) is stationary and Pareto, provided that there exists some µ > 1 such that Eϕµ
n = 1.

According to equation (53), as the intensity of the households’ bequest motives χ→ ∞, we

have

ϕn → exp

[(
r − ρ

γ
+

(α− r)2

2γσ2
− η

)
T +

(
α− r

γσ

)
(Bi(nT )−Bi((n− 1)T ))

]
,

which, by equation (41), implies that

lim
χ→∞

ϕn = exp

[(
r +

(2γ − 1)(α− r)2

2γ2σ2

)
T +

(
α− r

γσ

)
(Bi(nT )−Bi((n− 1)T ))

]
.

Using the formula for the expected value of a lognormal random variable, it follows that

lim
χ→∞

Eϕn = exp

[(
r +

(α− r)2

γσ2

)
T

]
> 1.

By Hölder’s inequality, we know that Eϕn > 1 implies that Eϕµ
n > 1 for all µ > 1. Thus,

there exists a finite threshold χ̂ > 0 such that whenever χ ≥ χ̂, Eϕµ
n > 1 for all µ > 1. In this

case, we can no longer conclude that there is an equilibrium stationary Pareto distribution

of wealth in this economy with intergenerational transfers.

According to Proposition 5, a stable distribution of wealth requires both limited inter-

generational transfers and positive human wealth at the start of households’ lives. These

two factors interact to create an implicit redistributive mechanism that elevates the expected

growth rate of wealth for poor households above that for wealthy households.18 This occurs

because the discounted labor incomes that all households acquire at the start of their lives,

denoted by h(0), provide proportionally larger increases in wealth for poorer households.19

A redistributive mechanism is defined as any process that proportionally affects wealthy and

poor households differently, so these positive shocks to human wealth across generations are

clearly redistributive.

The above discussion demonstrates the key role of positive human wealth in generating

a stationary distribution of wealth. According to Proposition 5, however, this is only one of

two conditions that must be satisfied in order to ensure stationarity. The second of these

18In terms of equations (9) and (10) from the main model of Section 2, the term Λ− 1
2Γ

2 is larger for poor
households than for wealthy households in this case.

19This is a necessary consequence of adding the same value of h(0) to different values of wi(s, T ).
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conditions requires that the strength of households’ bequest motives χ not be too high. This

condition ensures that each dynastic household’s total accumulated wealth on average does

not grow arbitrarily large. If households’ wealth grows arbitrarily large, then asymptotically

the growth rate of wealth for all households is unaffected by positive shocks to human wealth

across generations, since fixed initial human wealth h(0) is eventually dwarfed by growing

total wealth xi(t). This outcome can also be seen from equation (50). According to this

equation, if the bequest motive χ is large enough, then the process xi will asymptotically

behave like a continuous semimartingale with equal growth rates across households. In the

two remarks in Appendix A, we show that such a process leads to an unstable distribution

of wealth just like in equation (13) from Theorem 2.

An important implication of Proposition 5 is that the size of intergenerational transfers

alone is essentially irrelevant to the stability of the distribution of wealth in models with

idiosyncratic investment risk. Instead, stability depends on the size of intergenerational

transfers as a proportion of dynastic households’ wealth. In particular, stability requires that

wealthy households transfer proportionally less total wealth (human wealth plus financial

wealth) to their offspring than do poor households.20 The absolute size of these transfers,

however, is not directly relevant, since large transfers that are smaller proportions of total

wealth for wealthy households will generate stability while small transfers that are larger

proportions of total wealth for wealthy households will generate instability. In other words,

it does not matter whether households leave 99% or 1% of their wealth to their offspring,

only that wealthy households leave a smaller proportion than poor households.

This discussion elucidates the connection between our results and those of Benhabib et al.

(2011), Benhabib and Zhu (2009), and Zhu (2010). In particular, the stability that is achieved

in the setups of Benhabib et al. (2011) and Zhu (2010) through implicitly redistributive inter-

generational transfers is a consequence of positive discounted labor incomes interacting with

limited growth of household wealth due to a low intensity of bequest motives. Conversely,

because the overlapping generations model of Benhabib and Zhu (2009) does not include

labor income, intergenerational transfers in this setup are never redistributive and hence

stability is achieved only in the presence of an explicit redistributive mechanism. The inten-

sity of households’ bequest motives and the size of their bequests to offspring are irrelevant

in this case, just like in the previous paragraph’s discussion.

20An implicit proof of this statement is provided by the two remarks in Appendix A. For a more direct
proof in a setting that directly includes intergenerational transfers, see the appendix of Fernholz (2014).
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Given the subtlety of the interaction between positive discounted labor incomes and the

growth of household wealth in setups with overlapping generations, we believe that fur-

ther research about the proportional value of intergenerational transfers for wealthy versus

poor households is warranted. Indeed, when contrasted with Benhabib et al. (2011) and Zhu

(2010), our results highlight the importance of different structural assumptions for the stabil-

ity of the economy. In the real world, are intergenerational transfers an implicit redistributive

mechanism? If so, empirically how important is this implicit redistributive mechanism rel-

ative to explicitly redistributive government tax and fiscal policies? The answer to these

questions could have useful policy implications.
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Figure 1: The shares of total wealth held by the wealthiest 1% (solid black line), the wealth-
iest 1-5% (dotted red line), and the wealthiest 5-10% (dashed green line). (Γ = 0.1)
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Figure 2: The shares of total wealth held by the wealthiest 1% (solid black line), the wealth-
iest 1-5% (dotted red line), and the wealthiest 5-10% (dashed green line) for different values
of Γ. (Top: Γ = 0.05, Middle: Γ = 0.1, Bottom: Γ = 0.2)
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Figure 3: The Gini coefficient of the economy for Γ = 0.1 (solid black line), Γ = 0.05 (dotted
red line), and Γ = 0.2 (dashed green line).
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Figure 4: The share of total wealth held by the wealthiest single household. (Γ = 0.2)
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