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Homogeneous Random Growth

Standard theory of random growth assumes homogeneous agents

log xi (t + 1)− log xi (t) = α + σBi (t),

where σ > 0 and Bi (t) ∼ N(0, 1)

Many applications for standard theory of random growth

I Firm size: Luttmer (QJE 2007)

I City size: Gabaix (QJE 1999)

I Income, wealth distributions: Gabaix, Lasry, Lyons, Moll (ECMA 2018)
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Heterogeneous Random Growth

Need to extend standard theory to match certain aspects of the data

I Introduce permanent heterogeneity in the growth rates of agents

log xi (t + 1)− log xi (t) = α + γi + σBi (t)

Two applications

I Long-run wealth mobility: simultaneously match high short-run mobility

and “low” long-run mobility (Benhabib, Bisin, and Fernholz, 2021)

I City size: match many of the empirical findings of Davis and Weinstein

(2002), also non-standard size distributions documented by Soo (2005)
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Homogeneous Rank-Based Random Growth

For each unit i , size dynamics are given by

d log xi (t) = αrt(i) dt + σrt(i) dBi (t),

where rt(i) is the rank of unit i at time t.

Refer to size of units, can be wealth of households, size of cities, etc.

Rank-based approach: log xi (t + 1)− log xi (t) = αk + σkBi (t), with

Bi (t) ∼ N(0, 1)

Easy to characterize stationary power law distribution in terms of

parameters αk and σk (Fernholz, 2017)
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Proposition (Mobility and Homogeneity)

In the homogeneous rank-based model with N total units, for each unit i ,

asymptotic rank satisfies

lim
τ→∞

E[rt+τ (i)] =
N + 1

2
.

All units are ex-ante identical, so in the long run they will all

approach the same rank — the median of the distribution

No long-run persistence
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Heterogeneous Rank-Based Random Growth

For each unit i , size dynamics are given by

d log xi (t) = αrt(i) dt + γi dt + σrt(i) dBi (t),

where rt(i) is the rank of unit i at time t. For simplicity, assume

γi ∈ {γ`, γh} with γ` < γh (two types: low-growth and high-growth).

This is the same setup as before, but with permanent heterogeneity:

log xi (t + 1)− log xi (t) = αk + γi + σkBi (t),

with Bi (t) ∼ N(0, 1).
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Theorem (Mobility and Heterogeneity)

In the heterogeneous rank-based model, for all units i , j , asymptotic rank

satisfies

lim
τ→∞

E[rt+τ (i)] < lim
τ→∞

E[rt+τ (j)] if and only if rt(i) < rt(j).

The higher the rank today, the higher the expected future rank

High-growth units spend more time in higher ranks, on average, so

the higher the rank today, the more likely a unit is to be a

high-growth type (and hence the higher the expected future rank)

Long-run persistence of ranks
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Theorem (Distribution and Heterogeneity)

Suppose that there is only one high-growth unit with γi = γh. Then,

under certain conditions, the stationary size distribution satisfies

lim
γh→∞

E[log x(1)(t)− log x(2)(t)] =∞,

and, for all k > 1,

lim
γh→∞

E[log x(k)(t)− log x(k+1)(t)] = constant.

As heterogeneity grows, on average the top-ranked unit grows relative

to other units (top rank will also be highly persistent)

Outside of top rank, distribution looks like standard power law
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Short-Run and Long-Run Wealth Mobility

Standard random growth models of wealth distribution do a poor job

of matching long-run mobility (Benhabib, Bisin, and Fernholz 2021)

I Wealth-rank coefficient after 585 years is 0.1: Barone & Mocetti (2021)

I Both parent and grandparent wealth-rank have predictive power for

child wealth-rank: Boserup, Kopczuk, & Kreiner (2014)

Can a model with permanent heterogeneity simultaneously match

wealth distribution, short-run mobility, and long-run mobility?
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Homogeneous Rank-Based Model

Build a microfounded, incomplete markets model based on the models of

Benhabib et al. (2011, 2019), with intergenerational wealth dynamics

xi (t + 1) = λxi (t) + β, (1)

where λ and β are endogenous and depend on structural parameters

(returns, income, preferences, policy) of model.

Following Fernholz (2017), estimate a rank-based model based on (1),

d log xi (t) = αk dt + σk dBi (t),

where parameters αk and σk depend on λ and β.
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Rank-Based Model
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Heterogeneous Rank-Based Model

Also consider a rank-based model with permanent heterogeneity,

d log xi (t) = αk dt + γi dt + σk dBi (t),

where γi ∈ {γ`, γh} with γ` < γh (two types of households: low-growth

and high-growth).

This permanently heterogeneous model is constructed to generate

(approximately) the same wealth distribution as the homogeneous model.
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Homogeneous vs. Heterogeneous Models
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Low-Growth Percentiles
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Auto-Correlated Returns

Recall the original incomplete markets model with intergenerational

wealth dynamics

xi (t + 1) = λxi (t) + β.

If intergenerational wealth returns (and income) follow an AR-1 process,

then this creates intergenerational persistence in the parameters λ and β

as well. Can this model match the data?
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Auto-Correlated vs. Permanently Heterogeneous Models
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Auto-Correlated Returns

Auto-correlated returns model does not match long-run mobility data

as well as permanently heterogeneous model

I Both grandparent-child rank and long-run rank persistence coefficients

are too low

Auto-correlated returns model also generates too much

intergenerational return rank persistence

I Auto-correlated returns model predicts 0.95, while Fagereng, Guiso,

Malacrino, & Pistaferri (2020) find 0.16 in Norwegian data

I Permanently heterogeneous model predicts 0.08
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Intuition

How does the permanently heterogeneous model match the

grandparent-child rank coefficient?

I The higher the grandparent wealth-rank, the more likely a child is to be

a high-growth household and hence the higher its expected wealth-rank

I True even controlling for parent wealth-rank (non-Markovian model)

How does the permanently heterogeneous model match long-run

persistence of rank?

I Mobility and heterogeneity theorem:

lim
τ→∞

E[rt+τ (i)] < lim
τ→∞

E[rt+τ (j)] if and only if rt(i) < rt(j).

I Non-ergodic model
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Long-Run Persistence
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Questions

d log xi (t) = αk dt + γi dt + σk dBi (t)

What do the γi terms capture?

I Persistent cultural and institutional factors

I Low parent-child return-rank correlation points to persistent

institutional factors for sustaining long-run wealth persistence

A more careful quantitative calibration?

I Build richer model and calibrate by targeting specific moments

I Difficult to find data on distribution, wealth-rank and return-rank

correlations, and mobility all from one country
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Different Theories

Davis and Weinstein (2002) consider three competing theories

1. (Homogeneous) Random growth: cities grow randomly, and this leads

to a Pareto distribution and Zipf’s law

2. Increasing returns: big cities have advantages because of knowledge

spillovers, labor-market pooling

3. Locational fundamentals: fundamental economic characteristics are

random, and determine size

Post-WW II Japan suggests growth is not fully random, since same cities

as before grow to be largest
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Random Growth and Locational Fundamentals

Combine random growth and locational fundamentals theories:

d log xi (t) = αk dt + γi dt + σk dBi (t)

I Locational fundamentals imply permanent heterogeneity via γi terms

Mobility and heterogeneity theorem matches post-WW II Japanese

experience:

lim
τ→∞

E[rt+τ (i)] < lim
τ→∞

E[rt+τ (j)] if and only if rt(i) < rt(j).

I City ranks are persistent, so larger cities pre-WW II are expected to

grow larger again despite their destruction during WW II
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Deviations from Power Laws

Many deviations from Zipf’s law and power laws for city size

distributions around the world (Gabaix, 1999; Soo, 2005)

I Biggest city or cities often “too large”: France, UK, South Korea,

Mexico, Argentina, Russia

Distribution and heterogeneity theorem matches the deviations. If

d log xi (t) = αk dt + γi dt + σk dBi (t), with γi ∈ {γ`, γh} and

γ` < γh, then

lim
γh→∞

E[log x(1)(t)− log x(2)(t)] =∞,

while the rest of the distribution looks like a standard power law

I Top-ranked city is different from the rest, persists at the top
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Questions

d log xi (t) = αk dt + γi dt + σk dBi (t)

How important is permanent heterogeneity?

I What is the magnitude of γi parameters?

I How many different types are needed to match the data?

Are there other patterns in the data that the combined random

growth and locational fundamentals model can or cannot explain?

I Changes in city size distributions over time

What about time-varying growth rates and volatilities, or

location-specific variances (i.e. σi )?

Ric Fernholz (CMC) Heterogeneous Random Growth August 23, 2021



Introduction Theory Application: Long-Run Wealth Mobility Application: City Size Distribution

The End

Thank You
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