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Abstract

Recent empirical work has demonstrated a positive correlation between grandparent-

child wealth-rank, even after controlling for parent-child wealth-rank, as well as a pos-

itive correlation between dynastic wealth-ranks across almost 600 years. We show that

a simple heterogeneous agents model with idiosyncratic returns to wealth generates

a realistic wealth distribution but fails to capture these long-run patterns of wealth

mobility. An auto-correlated returns specification of this model also fails to capture

both short and long-run mobility. However, an extension of the heterogeneous agents

model which includes permanent heterogeneity in returns to wealth is able to simulta-

neously match the wealth distribution, short-run wealth mobility, and long-run wealth

mobility.
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1 Introduction

Recent heterogeneous agents modeling of consumption-saving decisions has successfully been

able to identify the main drivers of wealth inequality (Benhabib et al., 2019; Cagetti and

De Nardi, 2006; Castañeda et al., 2003; Hubmer et al., 2016; Kindermann and Krueger,

2021; Krusell and Smith, 2015; Quadrini, 2000). This literature shows that heterogeneous

agents models with stochastic labor earnings and idiosyncratic returns to wealth can produce

fat-tailed distributions of wealth which match the data well.1 These models can also fit

reasonably well the inter-generational social mobility of wealth, producing a realistic parent-

child wealth-rank correlation (Benhabib et al., 2019).

More recently, however, empirical results suggest a significant grandparent-child wealth-

rank correlation even after controlling for the effects of parent wealth on child wealth

(Boserup et al., 2014). Furthermore, even long-run wealth-rank correlations appear to per-

sist across generations (Barone and Mocetti, 2016; Clark, 2014; Clark and Cummins, 2015).

With respect to this dimension of inter-generational mobility, the heterogeneous agents mod-

els in the literature do not fare well, in that they cannot generate a large enough coefficient

for grandparent-child wealth-rank nor a large enough correlation for dynastic wealth-ranks

over very long time periods. We discuss the theoretical reasons why this class of models

produces limited long-run rank-wealth correlations in Section 2.1. In Section 3 we confirm

this by means of simulation analysis.

In this paper we extend a simple heterogeneous agents model to introduce permanent

heterogeneity in the rate of return to wealth across generations. In other words, we allow

households in some dynasties to have their wealth grow faster on average than households

in other dynasties. This can be seen as a formalization of a latent factor representation of

persistent cultural and institutional factors suggested in the literature in political economy

and sociology, along the lines of Bisin and Verdier (2001); Acemoglu and Robinson (2008);

Bourdieu (1984, 1998). In Section 2.1 we show theoretically that such a model has the

potential to generate a strong inter-generational rank-correlation of wealth, also in the long-

run. In Section 3 we confirm that a calibrated permanently heterogeneous rank-based model

can produce both a fat-tailed distribution of wealth which matches the data well as well as

strong inter-generational correlations akin to those documented in the data.

It is not difficult to envision other extensions of simple heterogeneous agents models

1See Benhabib et al. (2017) for a discussion of the relative role of earnings and returns to wealth.
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which could produce significant grandparent-child and even long-run wealth-rank correla-

tions, e.g., postulating inter-generational auto-correlation in earnings and in the rate of

return to wealth. However, the evidence is not favorable to the existence of independent di-

rect causal effects across generations, beyond parent-child effects. We discuss this evidence

in the next section. Extending the model along these lines requires postulating very strong

inter-generational auto-correlation in earnings and in the rate of return to wealth to capture

long-run persistence, which does not appear plausible and certainly not parsimonious as an

explanation. Indeed, in Section 3.2.1 we show by means of simulation analysis that the long-

run auto-correlations of wealth-ranks in the data can be generated in principle by models

specifying auto-correlated returns to wealth, but at the cost of excessively high parent-child

and grandparent-child wealth-rank correlations with respect to the data.

Finally, we compare the implications of the permanently heterogeneous rank-based model

and the auto-correlated returns to wealth model with respect to parent-child return-rank

correlation. We show in Section 3.2.1 that the model with permanent heterogeneity produces

in our calibration a small parent-child correlation of returns, close to the one documented

by Fagereng et al. (2020). The auto-correlated returns to wealth model on the other hand

also produces an excessively high parent-child return-rank correlation. We argue that this

is suggestive of persistent institutional factors as mechanisms for sustaining long-run wealth

persistence, rather than of direct inter-generational mechanisms like cultural transmission.

1.1 Long-Run Rank-Wealth Correlation

In this section we briefly discuss the evidence documenting wealth-rank correlations across

generations and its interpretation in the literature. First of all, a positive correlation be-

tween grandparent-child wealth-rank, even after controlling for parent-child wealth-rank, is

documented in Boserup et al. (2014), using three generations of Danish wealth data. Since

parent and grandparent wealth are correlated, and also possibly measured with error, they

implement a two stage least squares procedure to identify direct grandparent effects. They

find that grandparent effects do not necessarily go through parents and conclude in favor

of indirect effects, which they interpret as “social status.” Relatedly, Braun and Stuhler

(2018) identify a possible direct causal effect of grandparent-child interactions exploiting

quasi-exogenous variation in the time of grandparents’ death during World War II. They

also find no effects of direct contacts between grandparents and grandchildren and conclude
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in favor of grandparent effects operating through indirect mechanisms. Finally, Warren and

Hauser (1997), using data from the Wisconsin Longitudinal Study, find no evidence for an

independent influence of grandparents once they condition on the status of both parents.

The evidence on long-run dynastic wealth-rank correlation is noteworthy. Clark (2014)

and Clark and Cummins (2015) find high persistence of wealth across five generations using

data on rare surnames in England and Wales between 1858 and 2012; and Barone and

Mocetti (2016) find significant positive wealth elasticities as well as occupational persistence

for families in Florence between 1427 and 2011.2 These data are necessarily plagued by

noise, to the point of being hardly amenable to statistical inference to identify any latent

factors responsible for the persistence of wealth, education, or occupational status in the

long-run (Mare, 2011; Braun and Stuhler, 2018). Nonetheless this documented persistence is

consistent with the evidence on grandparent-child correlations, as argued in Stuhler (2012)

and Braun and Stuhler (2018). It is also consistent with recent empirical and theoretical

studies identifying long-run persistence in cultural traits; see Voth (2021); Bisin and Moro

(2021); Bisin and Verdier (2001) for surveys; and with the evidence of long-run persistence of

the effects of institutions, especially of those institutional factors which perpetuate political

and economic elites and hence wealth inequality; see Acemoglu and Robinson (2008); Bisin

and Verdier (2017, 2021) and the work by Pierre Bourdieu, e.g., Bourdieu and Passeron

(1970); Bourdieu (1984, 1998).

2 Models of Wealth Dynamics

In this section we develop the theory behind our analysis of long-run persistence in rank-

wealth correlation. We study rank-based models of wealth dynamics, that is, models in which

the growth rate of wealth depends on the wealth-rank rather than e.g., the wealth level.

These models are convenient for our analysis as they allow for an analytic characterization

of asymptotic wealth-ranks and approximate standard heterogeneous agents models well. In

the following, we first introduce a standard rank-based model and relate it to heterogeneous

agents models. We then introduce permanent heterogeneity in the rate of return to wealth

across generations into the standard rank-based model. Finally, we derive theoretical results

2Long-run persistence is also documented by Lindahl et al. (2015), Modin et al. (2013), Long and Ferrie
(2013), and Braun and Stuhler (2018) on occupational and educational attainment, and by Chan and Boliver
(2013) and Hertel and Groh-Samberg (2014) on social class.
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about long-run persistence of wealth-rank correlations.

2.1 Rank-Based Models

Consider an economy populated by N households, indexed by i = 1, . . . , N . Ranking house-

holds by their wealth, let ρt(i) denote the wealth-rank of household i at time t ∈ R, so

that ρt(i) < ρt(j) if and only if wi(t) > wj(t) or wi(t) = wj(t) and i < j. We define the

ranked wealth processes w(1) ≥ · · · ≥ w(N) by w(ρt(i))(t) = wi(t). The aggregate wealth of

the economy is then w(t) = w1(t) + · · ·+ wN(t).

For each household i = 1, . . . , N , wealth dynamics are given by

d logwi(t) = αρt(i) dt+ σρt(i) dBi(t), (2.1)

where Bi is a Brownian motion. The parameters αk and σk measure the average and variance

of the growth rate of wealth at each rank k. We normalize, without loss of generality, the

average growth rate of the economy to zero; that is, α1 + · · ·+ αN = 0. The parameters αk

capture then the average relative growth rates of wealth with respect to the growth rate of

the economy. According to Proposition 2.3 of Banner et al. (2005), the rank-based model

(2.1) admits a stationary distribution if

α1 + · · ·+ αk < 0, (2.2)

for all k = 1, . . . , N − 1. Condition (2.2) on the parameters αk suffices to guarantee that

no household in the top ranks grows faster than in the lower ranks, which would cause it to

break away from the average population wealth. We will show in the next section that this

condition is consistent with rates of return to wealth which are constant or even increasing

in wealth in a standard heterogeneous agents model of wealth dynamics.

We can now characterize the stationary distribution of the rank-based model.

Proposition 2.1. Consider a rank-based model (2.1) that satisfies (2.2) and also

σ2
k+1 − σ2

k = σ2
k − σ2

k−1, (2.3)
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for all k = 2, . . . , N − 1. The ranked wealth processes satisfy

E
[
logw(k)(t)− logw(k+1)(t)

]
=

σ2
k + σ2

k+1

−4(α1 + · · ·+ αk)
, (2.4)

for all k = 1, . . . , N − 1, where the expectation is taken with respect to the stationary distri-

bution.

It follows then that the expected value of the ratio of wealth in rank k to wealth in rank

k + 1 at the stationary distribution i) is positive for all ranks k;3 and ii) is increasing in

the volatility parameters σk, σk+1. As an illustration, if the relative growth parameters αk

were increasing in k and σk constant, E
[
logw(k)(t)− logw(k+1)(t)

]
would be decreasing in

rank until αk turned positive. We finally note that, by the result in Theorem 2 of Ichiba

et al. (2011), w(k)/w(k+1) follows a Pareto distribution, with the Pareto parameter for each

k depending on the parameters αk and σk according to (2.4).

Rank-Based Model as Approximation

We introduce a simple heterogeneous agents consumption-saving model, along the lines of

Benhabib et al. (2019) and Benhabib et al. (2011), and show that it can be formally mapped

into an approximated rank-based model such as (2.1). In Section 3 we will then show

that an appropriate calibration of this model indeed approximates the heterogeneous agents

consumption-saving model well.4

Consider an economy populated by households who live for one generation, from t to

t + 1, in discrete time. Any household born at time t ∈ N has a single child entering the

economy at time t+ 1, that is, at its parent’s death. Generations of households are linked to

form dynasties. A single generation is composed of T subperiods and each household solves

a dynamic consumption-savings problem over subperiods, maximizing a present discounted

CRRA utility function with a joy-of-giving bequest final term (leaving its wealth at death

to its child). The household faces idiosyncratic yearly rates of return on wealth ri,t and

yearly base earnings yi,t at birth; that is, ri,t and yi,t are stochastic across generations but

deterministic inside each generation (more precisely the rate of return remains constant while

3Recall that, by the stationarity condition (2.2), the sums in the denominator of the right-hand-side of
(2.4) are all negative for k = 1, . . . , N − 1 where the expression is defined.

4More generally, model (2.1) can be calibrated to approximate many different dynamic models and real-
world phenomena that exhibit Pareto-like distributions (Fernholz, 2017).
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earnings grow at a constant growth rate g). All households are ex-ante identical, except for

the rate of return to wealth, earnings, and initial wealth (as bequests). In equilibrium, the

intergenerational wealth dynamics for each household i = 1, . . . , N follow

wi(t+ 1) = λ(ri,t)wi(t) + β(ri,t, yi,t), (2.5)

where yi,t and ri,t denote, respectively, the yearly base labor income (growing at constant

rate g in generation t) and the yearly return on wealth for household i (constant in gen-

eration t), and wi(t) denotes the wealth holdings of household i in generation t. Equation

(2.5) represents wealth accumulation in reduced form, after optimal consumption has been

subtracted from the right-hand side. The functions λ and β are obtained as closed-form

solutions of the dynamic optimal consumption-saving problem of the household. They are

the same for all households i = 1, . . . , N and represent, respectively, the inter-generational

return on wealth and the present discounted value of labor income, after optimal household

consumption, an affine linear function of wealth, has been netted out each period.5 We refer

to the model (2.5) as the Standard model.

Let the function πt(k) identify the index i of the k-th ranked household at time t, so that

πt(k) = i if and only if ρt(i) = k. The rank-based approximation of the Standard model (2.5)

is the rank-based model (2.1) where the parameters αk and σk are defined by

αk = E
[
log
(
wπt(k)(t+ 1)/w(t+ 1)

)
− log

(
wπt(k)(t)/w(t)

)]
,

σ2
k = Var

[
log
(
wπt(k)(t+ 1)/w(t+ 1)

)
− log

(
wπt(k)(t)/w(t)

)]
,

(2.6)

5More precisely, in Benhabib et al. (2011), the functions β and λ depend on i) the generation-span T and
the growth rate of labor income over time g; ii) preference parameters η, ψ, and χ, representing the time
discount rate, the elasticity of substitution, and the bequest motive, respectively; iii) policy parameters b
and ζ, denoting the estate tax on bequests of wealth and the capital income tax rate. They are expressed in
closed-form as:

λ(ri,t) = (1− b)er̄i,tT A(r̄i,t)B(b)

eA(r̄i,t)T +A(r̄i,t)B(b)− 1
,

β(ri,t, yi,t) = (1− b)yi,t
e(g−r̄i,t)T − 1

g − r̄i,t
er̄i,tT

A(r̄i,t)B(b)

eA(r̄i,t)T +A(r̄i,t)B(b)− 1
,

with

A(ri,t) = ri,t −
ri,t − η
ψ

, B(b) = χ1/ψ(1− b)(1−ψ)/ψ, and r̄i,t = (1− ζ)ri,t.
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for each rank k = 1, . . . , N .6 At each rank k of the distribution, the parameters αk and σk

measure the average and variance of the growth rate of wealth relative to the aggregate for

a generation in the Standard model (2.5). Because the rank-based approximation of (2.5)

uses the parameters αk and σk defined by (2.6), it follows that these parameters represent

intergenerational relative growth rates and variances in the rank-based model. Like the

Standard model, then, each new generation in the continuous-time rank-based approximation

(2.1) is born at time t ∈ N, and these generations are stacked.

The relative growth rate parameters αk represent the main link between the rank-based

model (2.1) and the Standard model (2.5): at the stationary distribution of the Standard

model, the rank-based relative growth rate parameters αk satisfy, for each rank k = 1, . . . , N ,

αk = E
[
log
(
wπt(k)(t+ 1)/w(t+ 1)

)
− log

(
wπt(k)(t)/w(t)

)]
= E

[
log
(
wπt(k)(t+ 1)/wπt(k)(t)

)]
= E

[
log
(
λ(rπt(k),t) + β(rπt(k),t, yπt(k),t)/wπt(k)(t)

)]
, (2.7)

since the expected value of aggregate wealth w satisfies E[logw(t + 1)] = E[logw(t)] by

stationarity. From (2.7), we can express the rank-based relative growth rate parameters αk

in terms of β and λ, the parametric functions characterizing the solution of the consumption-

savings problem underlying the Standard model (2.5):

αk = E
[
log

(
λ(rπt(k),t)

(
1 +

β(rπt(k),t, yπt(k),t)

λ(rπt(k),t)wπt(k)(t)

))]
= E

[
log
(
λ(rπt(k),t)

)]
+ E

[
log

(
1 +

β(rπt(k),t, yπt(k),t)

λ(rπt(k),t)wπt(k)(t)

)]
. (2.8)

Equation (2.8) provides a simple decomposition of the rank-based relative growth rates αk

from equation (2.1) in terms of i) the inter-generational return on wealth, adjusted for

equilibrium household behavior, λ, at rank k in the wealth distribution; ii) the present

discounted value of labor income, adjusted for equilibrium household behavior, β, divided

by a measure of generational capital income, λw, at rank k in the distribution.

The decomposition (2.8) is a fundamental interpretation tool in our analysis in that it

allows us to map the stability condition for rank-based models in (2.2) into a condition in

6The expectations in (2.6) are calculated under the stationary distribution of model (2.5). Note that
model (2.5) has a Brownian motion continuous time limit; see Saporta and Yao (2005).
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terms of β and λ in the Standard model (2.5). In the Standard model (2.5), wealth returns

ri,t and labor income yi,t are both independent of the wealth rank of household i at time t.

Consequently, the first component of the decomposition (2.8), λ, is independent of wealth

rank while the second component of this decomposition, β
λw

, is decreasing in wealth rank

since wealth w is increasing in rank. In the Standard model, then, α1 < α2 < · · · < αN

because the ratio of labor income to capital income is lower at higher ranks in the wealth

distribution. A negative relationship between wealth and returns, as e.g., in models with

decreasing returns like Cagetti and De Nardi (2006), is not required to satisfy the stability

condition (2.2). In fact, if follows from this argument that even a positive relationship

between wealth and returns in the Standard model could be consistent with condition (2.2).

Proposition 2.2. If the Standard model (2.5) is stationary, then its rank-based approxima-

tion defined by (2.1) and (2.6) is also stationary.

Benhabib et al. (2019) present a model of the form (2.5) with higher returns to wealth at

higher wealth ranks and show that this model admits a stationary distribution. Therefore,

Proposition 2.2 implies that the rank-based approximation of this model is also stationary

and satisfies the stability condition (2.2), despite the positive relationship between wealth

and returns.

2.2 Permanently Heterogeneous Rank-Based Model

We introduce a form of permanent heterogeneity in the average growth rates of households

in the rank-based model (2.1). For each household i = 1, ..., N , wealth dynamics are given

by

d logwi(t) =
(
γi + α̂ρt(i)

)
dt+ σρt(i) dBi(t), (2.9)

for each household i = 1, . . . , N , with γi ∈ {γ`, γh} and γh > γ`. The parameter γi acts as a

permanent additive factor to the mean of the growth rate of wealth: γi = γ` (resp. γi = γh),

household wealth grows more slowly (resp. quickly) on average over time. We assume that n

of the households are characterized by γi = γh, and N − n of the households by γi = γ`. We

keep normalizing the average growth rate of wealth to zero, which in this economy requires∑N
k=1 α̂k +

∑N
i=1 γi =

∑N
k=1 α̂k + (N − n)γ` + nγh = 0. The growth rate of wealth of each

household i is nonetheless stochastic, due to the Brownian motion term σρt(i) dBi(t), whose

volatility depends on the wealth-rank of the household k = ρt(i).
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To admit a stationary distribution, the permanently heterogeneous model (2.9) must

satisfy a condition that generalizes condition (2.2) for the rank-based model (2.1) with no

heterogeneity. Following Ichiba et al. (2011), this condition states that

m∑
k=1

α̂k + m̃γh + (m− m̃)γ` < 0, for all m = 1, . . . , N − 1; m̃ = min(m,n). (2.10)

Condition (2.10) ensures that, accounting for the permanent heterogeneity in the average

growth rates of households, no top subset of households grows faster than the aggregate.

This is sufficient to guarantee that the high-growth households (with γi = γh) in the top

ranks do not break away from the rest of the population.

2.3 Long-Run Wealth-Rank Correlations

In this section we provide a theoretical characterization of asymptotic wealth-rank for both

the standard rank-based model and the model with permanent heterogeneity. We show that

permanent heterogeneity is required to generate long-run wealth-rank correlations.

We start with the implications of the rank-based model (2.1) for mobility. We define

occupation times ξi,k, for all i, k, as the fraction of time household i occupies rank k, ξi,k =

limT→∞
1
T

∫ T
0

1{ρt(i)=k} dt. Note that, by definition, the occupation times must add up to one,

so that
∑N

i=1 ξi,k =
∑N

k=1 ξi,k = 1. We can now show the following.

Proposition 2.3. Occupation times ξi,k in the standard rank-based model (2.1) satisfy

ξi,k =
1

N
, a.s., for all i, k. (2.11)

Furthermore, for each household i, the asymptotic wealth-rank satisfies

lim
τ→∞

E[ρt+τ (i)] =
N + 1

2
. (2.12)

This result is a consequence of the fact that all households in the model (2.1) display identical

expected wealth dynamics. Therefore, i) they will spend equal time in all ranks, (2.11); and ii)

they must on average approach the same rank asymptotically; hence, necessarily the median

of the distribution, (2.12). In other words, (2.11)-(2.12) imply that higher-ranked households

today do not occupy on average higher ranks in the future as well. As a consequence, the
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standard rank-based model (2.1) cannot produce long-run wealth-rank correlations.

This is not the case when permanent heterogeneity is added to the standard rank-based

model, as in (2.9). We turn now to analyze the implications of this model for asymptotic

wealth-rank. If household i has γi = γ`, then, by symmetry, the fraction of time household i

spends in each rank k is equal to the fraction of time any other low-growth household spends

in each rank k. Thus, we can define the low-growth household occupation times ξ`,k such

that ξ`,k = ξi,k, for all ranks k = 1, . . . , N . Similarly, if we suppose that household j is a

high-growth household with γj = γh, then we can define the high-type household occupation

times ξh,k such that ξh,k = ξj,k, for all ranks k = 1, . . . , N . Because the sum of occupation

times across all ranks or individual households must equal one, it follows that the low- and

high-growth occupation times ξ`,k and ξh,k must satisfy

(N − n)ξ`,k + nξh,k = 1, (2.13)

for all k = 1, . . . , N .

Proposition 2.4. Consider a permanently heterogeneous rank-based model (2.9) that satis-

fies (2.3) and (2.10). Then, the low- and high-growth occupation times ξ`,k and ξh,k satisfy

0 < ξ`,1 < ξ`,2 < · · · < ξ`,N <
1

N − n
, a.s., (2.14)

and
1

n
> ξh,1 > ξh,2 > · · · > ξh,N > 0, a.s. (2.15)

Because the occupation times for both low- and high-growth households satisfy ξi,1 +

· · · + ξi,N = 1, Proposition 2.4 implies that ξ`,1 < ξh,1 and ξh,N < ξ`,N . This means that

low-growth households spend more time at the lowest ranks of the wealth distribution across

generations than high-growth households. The following theorem uses this result to show

that the heterogeneous rank-based model (2.9) will feature persistence in wealth-ranks over

infinitely long time horizons.

Theorem 2.5. Consider a permanently heterogeneous rank-based model (2.9) that satisfies

(2.3) and (2.10). Then,

lim
τ→∞

E[ρt+τ (i)] < lim
τ→∞

E[ρt+τ (j)] if and only if ρt(i) < ρt(j), (2.16)

11



for all households i, j = 1, . . . , N , where the expectations are taken with respect to the sta-

tionary distribution.

Theorem 2.5 implies that the long-run asymptotic household wealth-rank correlation will

be positive in the heterogeneous rank-based model. This is because higher-ranked households

occupy higher ranks in expectation, due to the underlying persistence heterogeneity (the

expectations in (2.16) are unconditional with respect to whether households i and j are

high- or low-growth).

The intuition for the result in Theorem 2.5 is worth presenting in some detail as it under-

lies some of the simulation results in the next section. Because all high-growth households

are ex-ante identical, the expected asymptotic rank of these households is the median of

the top n ranks of the wealth distribution; that is, high-growth households occupy higher

ranks in expectation across generations than low-growth households. Similarly, the expected

asymptotic rank of low-growth households is the median of the bottom N − n ranks. With-

out knowing whether a household i is high- or low-growth, its expected asymptotic rank is

thus a weighted average of the medians of the top n and bottom N − n ranks, with the

weights equal to the respective probabilities that household i is high-growth and that it is

low-growth. Because higher-ranked households are more likely to be high-growth households,

it follows that the weight on the median of the top n ranks is greater for such high-ranked

households and hence the expected asymptotic rank is also higher.

To better understand the simulation results in the next section it is important to empha-

size, however, that while the long-run asymptotic household wealth-rank correlation depends

on the permanent heterogeneity, the parent-child correlation of the growth rate of wealth is

affected negatively in a crucial manner by the volatility of the Brownian motion term in the

wealth dynamics equation (2.9).

3 Simulations

In this section we present a simulation analysis of inter-generational wealth dynamics. We

calibrate each of the models of Section 2 and compare their simulated wealth dynamics along

various relevant empirical dimensions regarding the wealth distribution and wealth-rank

persistence over generations. More precisely, we consider i) the approximated rank-based

model (2.1) calibrated using the Standard model (2.5); and ii) the permanently heterogeneous
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rank-based model (2.9), the extension of the rank-based model that includes permanent

heterogeneity.

3.1 Calibration

In this section we discuss the details of the calibrations we adopt. We start from a param-

eterization of the Standard model mostly based on the one in Benhabib et al. (2019). This

parametrization is the outcome of a Simulated Method of Moments estimation procedure to

match the wealth distribution and intergenerational social mobility data for the U.S.7 Ac-

cording to the estimates, we set the household lifespan T equal to 45 years and the growth

rate of labor earnings equal to 0.01. The preference parameters η, ψ, and χ are set equal

to 0.04, 2, and 0.25, respectively. The estate tax and the capital income tax, b and ζ, are

set equal to 0.2 and 0.15, respectively. To model yearly base labor income yi,t, we use a six-

state Markov chain calibrated using inter-generational persistence in labor income data from

Chetty et al. (2014) together with the U.S. Survey of Consumer Finances (SCF).8 Finally,

for the idiosyncratic yearly return on wealth, ri,t, we use a four-state Markov chain that is

calibrated so that the average and standard deviation of these returns approximately match

the empirical results of Fagereng et al. (2020) for Norwegian data.9

The Approximated Rank-Based model. We then construct the rank-based approxima-

tion of the parametrization of the Standard model we just described. This approximation

is obtained using (2.6) to define the rank-based parameters αk and σk from (2.1). We first

simulate the parameterization of the Standard model, which we do for 2,000 generations with

the number of households N set equal to 10,000. Importantly, this parametrization induces

by construction a stationary wealth distribution which matches the data for the U.S. well.

We then use the results of these simulations and follow the econometric procedure described

7Wealth shares data is from the Survey of Consumer Finances (SCF), while intergenerational mobility
data is from Charles and Hurst (2003).

8Earnings persistence by itself, without stochastic returns across generations, cannot induce the wealth
inequality observed in the data. This is because the distribution of earnings has a much thinner right tail
than the distribution of wealth; see Benhabib et al. (2017); Benhabib and Bisin (2018).

9Specifically, we have ri,t ∈ {0.02, 0.05, 0.09, 0.27}, with i.i.d. transition probabilities for the four states
equal to (0.44, 0.45, 0.10, 0.01), respectively. With this parameterization, the average and standard deviation
of idiosyncratic returns are 4.3% and 3.1%, respectively. The estimates of the process for ri,t in Benhabib
et al. (2019) are very close to these.
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by Fernholz (2017) to estimate the relative growth-rate parameters αk, k = 1, . . . , N .10 Using

our estimates of the rank-based relative growth rate parameters αk, we can find values for

rank-based variance parameters σk satisfying (2.3) that, according to the characterization

(2.4), yield a stationary distribution for the rank-based model that best approximates the

average distribution of the Standard model across the 2,000 generations.11
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Figure 1: Annualized estimated parameters αk for the approximated rank-based model.

Figure 1 plots the annualized estimated relative growth-rate parameters αk for the rank-

based approximation of the Standard model. The figure shows that the these parameters

satisfy the stability condition (2.2), with the estimated values such that α1 < α2 < · · · <
αN .12 Table 1 reports the wealth distribution shares and wealth-rank correlations in the

data and those implied by the two models at their stationary distribution. The rank-based

model closely approximates the Standard model and both fit the data relatively well.

Figure 2 plots the annualized estimated variance parameters σk for the rank-based ap-

proximation of the Standard model, and Figure 3 presents a log-log plot of wealth versus

rank for both the Standard model and its rank-based approximation. We can see from Figure

3 that the rank-based approximation generates a smoothed version of the wealth distribution

10Following Fernholz (2017), we apply a Gaussian kernel filter with a range of 3,000 ranks ten times to
smooth the estimated parameters αk.

11Specifically, we minimize the squared distance between the wealth shares reported in Table 2 for the
Standard model and those predicted by (2.4) for the rank-based model.

12Recall from Section 2.1, however, that this does not necessarily imply that returns on wealth in the
model are lower for higher-ranked, higher-wealth households.
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from the Standard model.
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Figure 2: Annualized estimated parameters σk for the approximated rank-based model.
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Figure 3: Log-log plot of wealth versus rank for the Standard model (average from 2,000
simulations) and its rank-based approximation.
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Data Standard Approximated

Model Rank-Based

Model

Wealth Distribution

Top 1% 33.6% 33.0% 31.9%

Top 1-5% 26.7% 23.0% 17.1%

Top 5-10% 11.1% 6.9% 9.5%

Top 10-20% 12.0% 8.6% 11.2%

Top 20-40% 11.2% 11.4% 13.1%

Top 40-60% 4.5% 8.4% 8.3%

Bottom 40% -0.1% 8.6% 8.9%

Table 1: Average wealth shares from 1,000 simulations of the different models - data from the

Survey of Consumer Finances.

The Permanently Heterogeneous Rank-Based model. We calibrate the permanently

heterogeneous rank-based model (2.9), which extends the rank-based model (2.1) to in-

clude permanent heterogeneity, so as to maintain approximately the same realistic stationary

wealth distribution as the approximated rank-based model. We assume that 3,000 of the

households are high-growth households, with γh = 0.015. According to (2.10), this implies

that the remaining 7,000 low-growth households have γ` ≈ −0.0064. Furthermore, we can

use the same estimated parameter values for σk from the approximated rank-based model

(Figure 2) for the permanently heterogeneous rank-based model.

Given the postulated distribution of γi and σk, the calibration of the rank-based relative

growth rates α̂k is chosen to produce a stationary distribution similar to the one produced

by the Standard and the Approximated rank-based models (which, in turn, match well the

distribution in the data). Indeed, we cannot simply use the estimated values of αk from the

approximated rank-based model (Figure 1) for the permanently heterogeneous rank-based

model since the permanently heterogeneous parameters γi from (2.9) lead to a more skewed

stationary distribution than in the model (2.1).

Consider the rank-based approximation (2.1) of the heterogeneous rank-based model

(2.9), where the parameters αk are defined as in (2.6). In this case, Fernholz et al. (2013)

show that the relative growth rate parameters α′k for the rank-based approximation are given
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by

α′k = α̂k + (N − n)ξ`,kγ` + nξh,kγh, (3.1)

for all k = 1, . . . , N . According to Proposition 2.1, the stationary distributions of the rank-

based approximation of the model (2.9) and the rank-based model (2.1) will be the same

if we choose α̂k such that α′k = αk, for each rank k. However, solving for the parameters

α̂k that achieve this equality is complicated by the fact that we cannot directly solve for

the occupation times ξ`,k and ξh,k in (3.1), but instead must rely on simulations of the

permanently heterogeneous rank-based model to generate estimates of these parameters.

We use a simple procedure to generate estimates of the parameters α̂k from the model

(2.9) such that α′k is approximately equal αk, for each rank k. First, we use (3.1) to guess

values of the parameters α̂k such that α′k − αk ≈ 0, for all k = 1, . . . , N . Next, we simulate

the permanently heterogeneous rank-based model with these parameters α̂k to generate

estimates of the rank-based approximation parameters α′k, and then calculate the sum of

squared errors of α′k − αk. Once this error term is calculated, we incrementally alter the

values of α̂k by setting each equal to xα̂k, where x is slightly less than or slightly greater

than one. We then re-estimate the parameters α′k and again calculate the sum of squared

errors of α′k−αk. If the squared error with the parameter values xα̂k is smaller, then we keep

the new parameter values and repeat the procedure by altering the new parameter values in

the same way. If not, then we consider a different value of x and repeat the procedure. This

procedure is repeated until the sum of squared errors of α′k − αk is larger for the parameter

values xα̂k, for both x = 1.001 and x = 0.999. The annualized estimated parameters α̂k

found using this procedure are shown in Figure 4.
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Figure 4: Annualized estimated parameters α̂k for the permanently heterogeneous rank-based
model, and annualized estimated parameters αk for the approximated rank-based model.

3.2 Results

All the models we calibrate are stationary and hence can be simulated to generate stationary

distributions of wealth which can be compared with the SCF data on wealth shares by

percentile. The results of these simulations are reported in the upper part of Table 2. Since

these models are calibrated from a parameterization of the Standard model constructed to

match these wealth shares, they all do relatively well at this, especially for the top 1% wealth

share.
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Data Approximated Perman. Heterog.

Rank-Based Rank-Based

Model Model

Wealth Distribution

Top 1% 33.6% 31.9% 34.0%

Top 1-5% 26.7% 17.1% 16.6%

Top 5-10% 11.1% 9.5% 9.2%

Top 10-20% 12.0% 11.2% 10.8%

Top 20-40% 11.2% 13.1% 12.7 %

Top 40-60% 4.5% 8.3% 8.1%

Bottom 40% -0.1% 8.9% 8.5%

Wealth-Rank Correlations

Parent-Child Rank Coeff. 0.191 0.229 0.255

Grandparent-Child Rank Coeff. 0.116 0.018 0.077

Long-Run Persistence Coeff. 0.105 0.000 0.100

Table 2: Upper part: Average wealth shares from 1,000 simulations of the different models - data

from the Survey of Consumer Finances. Lower part: Average coefficients from regressions of child

rank on parent rank and grandparent rank from 1,000 simulations of the different models - data

from Danish wealth holdings for three generations in Boserup et al. (2014). Average coefficient

from regressions of household rank in generation t on household rank in generation t − 23 (585

years) from 1,000 simulations of the different models - data from estimates of very long-run (585

years) dynastic wealth holdings in Florence, Italy, in Barone and Mocetti (2016).

In addition to realistic wealth distributions, these models generate i) parent-child and

grandparent-child wealth-rank correlations (average coefficients from regressions of child rank

on parent rank and grandparent rank — see the note to Table 1) which we compare to

those of Boserup et al. (2014); and ii) the long-run link of dynastic wealth-ranks which

we compare to those of Barone and Mocetti (2016). The results of these comparisons are

reported in the lower part of Table 2.13 Both calibrated models tend to generate parent-

13The data we use to evaluate the models refers to different countries, though all are developed market
economies. This is due to a lack of comparable evidence for the U.S. It is arguably not problematic in that we
simply aim at a general theoretical and empirical understanding of the fundamental elements of a model of
wealth dynamics rather than at a formal estimation procedure. Interestingly, estimates of returns to wealth
in the U.S. (Benhabib et al., 2019) and in Norway (Fagereng et al., 2020) are very close; and ii) several of
these developed market economies in the West tend to share comparable wealth distributions, at least in
terms of their inequality (measured by the Gini coefficient); see Benhabib et al. (2017).
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child wealth-rank correlations slightly higher than in the data. They also tend to generate

grandparent-child wealth-rank correlations lower than in the data — though the permanently

heterogeneous rank-based model fares much better in this respect. With regards to long-run

correlations, the results we obtain are consistent with the theoretical results of Section 2.

As implied by Proposition 2.3, household wealth-ranks are uncorrelated over very long time

periods in the rank-based approximation of the Standard model. Household wealth-ranks

are instead positively correlated over arbitrarily long time periods in a rank-based model

that features permanent heterogeneity, as allowed by Theorem 2.5.14 In conclusion, the

permanent heterogeneity in the rank-based model helps to match rather well all aspects

of the data simultaneously — the wealth distribution, the link between child, parent, and

grandparent wealth ranks, and the positive correlation of dynastic wealth ranks over very

long time periods.

It is useful, then, to study the properties of the heterogeneous rank-based model more

closely. Table 3 shows the composition of the top 1% and top 5% wealth-ranked households

in terms of low- and high-growth households. This table also shows the composition of

the bottom 50% and bottom 25% ranked households. According to the table, high-growth

households make up the great majority of the top 1% and 5%, but there is still a non-

negligible minority of low-growth households in these top subsets. The results in the table

also suggest that low-growth households are more common in top subsets of the wealth

distribution than high-growth households are in bottom subsets of the wealth distribution.

Indeed, the fraction of low-growth households in the bottom 25% approximately matches the

fraction of high-growth households in the top 1%, even though the latter is a much smaller

and more exclusive subset of the wealth distribution.

Top 1% Top 5% Bottom 50% Bottom 25%

High-Growth Households 82.6% 68.8% 18.3% 12.8%

Low-Growth Households 17.4% 31.2% 81.7% 87.2%

Table 3: Average composition of the top 1%, top 5%, bottom 50%, and bottom 25% of
households from 1,000 simulations of the heterogeneous rank-based model.

Figures 5 and 6 plot the estimated occupation times of different percentiles of the wealth

14The Standard model is, like its rank-based approximation, unable to generate long-run wealth rank
correlations as well.
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distribution for, respectively, high- and low-growth households. The estimated occupation

times presented in the figures are clearly consistent with the result in Proposition 2.4. Be-

cause there are 3,000 high-growth households and 7,000 low-growth households, the maxi-

mum average occupation time for a high-growth household in any percentile of the wealth

distribution is 1/3000 ≈ 0.033%, while the maximum occupation time for a low-growth

household in any percentile is 1/7000 ≈ 0.014%.15
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Figure 5: Average high-growth household occupation times for different percentiles of the
wealth distribution from 1,000 simulations of the heterogeneous rank-based model.

15These upper bounds for low- and high-growth household occupation times also appear in Proposition
2.4, since the number of high-growth households in this simulation n is equal to 3,000.
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Figure 6: Average low-growth household occupation times for different percentiles of the
wealth distribution from 1,000 simulations of the heterogeneous rank-based model.

3.2.1 Sensitivity analysis: Auto-correlated returns

To better identify the role of permanent heterogeneity in capturing both the wealth dis-

tribution and wealth-rank persistence over generations, in this section we compare it with

a different form of imperfect social mobility, inter-generationally auto-correlated returns to

wealth.16 More specifically we report on the simulations of an extension of the Standard

model (2.5) in which there is no permanent component to the growth rate of wealth but

returns to wealth are highly auto-correlated across generations.

We assume that wealth returns follow a highly persistent AR-1 process, with

log(1 + ri,t+1) = θ log(1 + ri,t) + εi,t, (3.2)

where εi,t is normally distributed with mean equal to 0.041 and the persistence parameter θ is

equal to 0.95.17 The standard deviation of εi,t is chosen to match the U.S. wealth distribution

16The persistent heterogeneity in household saving behavior is the mechanism exploited by Degan and
Thibault (2016) to induce long correlations across generations. Such a mechanism is also at work in both
the permanently heterogeneous and the auto-correlated returns models, as dynasties with higher returns
endogenously display a higher savings rate.

17Results are very similar for θ = 0.90.
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data according to the SCF. For symmetry, we assume that labor earnings log yi,t also follow an

AR-1 process with persistence equal to 0.3, which matches the intergenerational persistence

of income in the U.S. according to Chetty et al. (2014), and with mean and standard deviation

chosen to match the calibration of income in the Standard model.18 In all other respects, the

auto-correlated returns model is identical to the Standard model which was used to calibrate

the rank-based model.

Auto-Correlated Perman. Heterog.

Data Returns Model Rank-Based

(θ = 0.95) Model

Wealth Distribution

Top 1% 33.6% 31.5% 34.0%

Top 1-5% 26.7% 20.6% 16.6%

Top 5-10% 11.1% 12.3% 9.2%

Top 10-20% 12.0% 13.5% 10.8%

Top 20-40% 11.2% 12.8% 12.7%

Top 40-60% 4.5% 5.8% 8.1%

Bottom 40% -0.1% 3.5% 8.5%

Wealth-Rank Correlations

Parent-Child Rank Coeff. 0.191 0.407 0.255

Grandparent-Child Rank Coeff. 0.116 0.044 0.077

Long-Run Persistence Coeff. 0.105 0.041 0.100

Table 4: See the notes to Table 2.

We report the results of these simulations in Table 4. These results show that the version

of the Standard model with highly auto-correlated returns is able to match rather well the

wealth shares in the data. Interestingly, it is able to generate a significant grandparent-child

wealth-rank correlation, but to do so it requires a much too strong correlation between the

parent and the child wealth-ranks. Fundamentally, however, the auto-correlated returns

model fails to match the long-run persistence coefficient in wealth-ranks which instead is

quite precisely captured by the permanently heterogeneous rank-based model.

To better understand these results, the long-run persistence of wealth-ranks implied by

18Note that the Standard model is calibrated so that income matches the U.S. data according to the SCF.
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the permanently heterogeneous rank-based model and the auto-correlated returns model are

compared most clearly in Figure 7. In this figure, we plot the correlation between the wealth

ranks of households in generation t and generation t+ x, with values of x ranging from 1 to

25, for both the heterogeneous rank-based and auto-correlated returns models. Although the

auto-correlated returns model is able to generate substantial persistence in rank across one

or two generations, the rank correlation in this model quickly declines towards zero as the

generational gap between households increases. In contrast, the permanently heterogeneous

rank-based model generates a more realistic but smaller persistence in wealth rank across

one or two generations, and this persistence never falls below 0.1 even as the generational

gap grows large. Of course, this very long-run persistence in wealth rank is exactly what is

predicted by Theorem 2.5.
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Figure 7: Rank correlations across multiple generations from 1,000 simulations of the per-
manently heterogeneous rank-based and auto-correlated returns models.

Another important dimension along which it is useful to compare the predictions of

the permanently heterogeneous rank-based model and the auto-correlated returns models

is parent-child return-rank coefficients. These correlation coefficients are interesting also

as possible indicators of the mechanisms behind long-run wealth persistence. A relatively

high parent-child return-rank coefficient suggests direct inter-generational mechanisms, like

cultural transmission. A low coefficient suggests, on the contrary, institutional factors, like

the perpetuation of the political and economic elites, which are extremely persistent but

do not run directly from parent to child (Bourdieu, 1984, 1998; Acemoglu and Robinson,
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2008; Bisin and Verdier, 2017). Using Norwegian data, Fagereng et al. (2020) report a small

coefficient, 0.16, from a regression of child return rank on parent return rank.

Both the permanently heterogeneous and the auto-correlated returns models induce by

construction some parent-child correlations in the returns to wealth.19 In both models how-

ever this correlation is reduced by the postulated volatility of the growth rate, which is

captured by the term σk in (2.9) for the permanently heterogeneous model and by the vari-

ance of εi,t in the auto-correlated model. In both models, these variances are chosen to match

the distribution of wealth and wealth-rank correlations as reported in Table 4. Interestingly,

we find that the permanently heterogeneous rank-based model, in our calibration, produces

quite a small parent-child correlation of returns, even smaller than in the Norwegian data,

while this correlation is much higher for the auto-correlated returns model. Specifically,

the coefficient from a regression of child return rank on parent return rank, averaged across

1,000 simulations, is equal to 0.08 for the permanently heterogeneous model20 and is equal

to 0.95 for the auto-correlated returns model. Effectively, in our calibration, the volatility

of the growth rate in the permanently heterogeneous model introduces enough churning in

parent-child returns to lower their rank correlation substantially. This is not the case for

the auto-correlated model, which requires a small volatility of the growth rate to match the

distribution of wealth and wealth-rank correlations and as a consequence dramatically misses

the low return-rank correlation documented by Fagereng et al. (2020).

19In order to calculate the parent-child return rank coefficient for the permanently heterogeneous rank-
based model, it is necessary to decompose the parameters α̂k from (2.9) into log return and log labor income
to capital income components, as in (2.8). Specifically, we can write (2.9) as

d logwi(t) =
(
γi + κρt(i) + ωρt(i)

)
dt+ σρt(i) dBi(t), (3.3)

where the parameters κk and ωk measure, respectively, the log return to wealth and the log ratio of labor
income to capital income for the k-th ranked household and satisfy α̂k = κk + ωk, for each rank k =
1, . . . , N . We assume that returns to wealth are constant across wealth ranks as in the Standard model. As
a consequence, κk = 0 for all k = 1, . . . , N (following the normalization of the α̂k parameters and without
loss of generality, we normalize the κk parameters to sum to zero).

20We conjecture that using a model that incorporates higher returns at higher wealth ranks as in Benhabib
et al. (2019) to estimate a different permanently heterogeneous rank-based model of the form (2.9) could
generate an even closer match to the 0.16 parent-child return rank coefficient in Fagereng et al. (2020).
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4 Conclusion

We consider a simple heterogeneous agents model based on Benhabib et al. (2019) and show

that such standard models fail to match recent empirical results regarding long-run wealth

mobility. In particular, this type of model does not generate a positive correlation between

grandparent-child wealth rank, after controlling for parent-child wealth rank, and does not

generate a positive correlation between dynastic wealth ranks across very long time periods.

We extend the standard model to include permanent heterogeneity in returns to wealth, and

show that such an extended model is able to simultaneously match the wealth distribution,

short-run wealth mobility, and long-run wealth mobility. Finally, we find that the model

with permanent heterogeneity produces in our calibration a small parent-child correlation of

returns, close to the one documented by Fagereng et al. (2020) for Norway. This suggests

persistent institutional factors as mechanisms for sustaining long-run wealth persistence,

rather than direct inter-generational mechanisms like cultural transmission. While we do

not have enough structure and data to identify particular institutional channels responsible

for the long-run persistence in wealth correlations, future work along these lines is needed

to further this literature.
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Proofs

This section presents the proofs of Propositions 2.2, 2.3, and 2.4 and Theorem 2.5.

Proof of Proposition 2.2. First, note that E[log λ(rπt(k),t))] = E[log(λ(rπt(`),t))] and also

E[β(rπt(k),t, yπt(k),t)] = E[β(rπt(`),t, yπt(`),t)] for all wealth ranks k, `, because the expected

value of both returns to wealth and labor income do not vary across different ranks. Then,

because the ranked wealth processes satisfy w(1) ≥ · · · ≥ w(N) by definition, it follows from

(2.8) that α1 ≤ α2 ≤ · · · ≤ αN . Following the econometric procedure described by Fernholz

(2017), we can estimate the αk parameters in (2.6) and map them to the corresponding

αk parameters from the rank-based model (2.1) so that condition (2.2) is satisfied and the

rank-based approximation of the Standard model is stationary.

Proof of Proposition 2.3. The first part of the proposition, (2.11), follows directly from

Proposition 2.3 of Banner et al. (2005). For the second part, we have, for any household

i = 1, . . . , N ,

lim
τ→∞

E[ρt+τ (i)] = lim
τ→∞

N∑
k=1

kP (ρt+τ (i) = k) = lim
τ→∞

N∑
k=1

k

N
=
N(N + 1)

2N
=
N + 1

2
,

where the second equality follows from (2.11).

Proof of Proposition 2.4. In order to prove the proposition, it is necessary to characterize

the occupation times for low- and high-type households in a heterogeneous rank-based model

(2.9) that satisfies (2.3) and (2.10). We denote the symmetric group of permutations of

{1, . . . , N} by ΨN , where p(k) ∈ {1, . . . , N} denotes the k-th element of the permutation p ∈
ΨN . Each permutation p describes a potential wealth ranking of the households i = 1, . . . , N ,

with p(k) denoting the index of the k-th ranked household. According to Corollary 4 from

Ichiba et al. (2011), for all i, k = 1, . . . N , the occupation time ξi,k is given by

ξi,k =
∑

{p∈ΨN | p(k)=i}

N−1∏
j=1

φp,j Ω, a.s., (A.1)

where

φp,j =
σ2
j + σ2

j+1

−4(
∑j

m=1 α̂m + γp(m))
, (A.2)

for any permutation p ∈ ΨN and all j = 1, . . . , N − 1, and Ω =

(∑
q∈ΨN

∏N−1
j=1 φq,j

)−1

.
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According to (A.1), for any k = 1, . . . , N − 1,

ξ`,k =
∑

{p∈ΨN | p(k)=`, p(k+1)=`}

N−1∏
j=1

φp,j Ω +
∑

{p∈ΨN | p(k)=`, p(k+1)=h}

N−1∏
j=1

φp,j Ω, (A.3)

and also

ξ`,k+1 =
∑

{p∈ΨN | p(k)=`, p(k+1)=`}

N−1∏
j=1

φp,j Ω +
∑

{p∈ΨN | p(k)=h, p(k+1)=`}

N−1∏
j=1

φp,j Ω. (A.4)

If k < N − 1 as well, then

∑
{p∈ΨN | p(k)=`, p(k+1)=h}

N−1∏
j=1

φp,j =
∑

{p∈ΨN | p(k)=`, p(k+1)=h}

φp,kφp,k+1

k−1∏
j=1

φp,j

N−1∏
j=k+1

φp,j, (A.5)

and

∑
{p∈ΨN | p(k)=h, p(k+1)=`}

N−1∏
j=1

φp,j =
∑

{p∈ΨN | p(k)=h, p(k+1)=`}

φp,kφp,k+1

k−1∏
j=1

φp,j

N−1∏
j=k+1

φp,j. (A.6)

For every p ∈ ΨN with p(k) = ` and p(k + 1) = h, there exists a p′ ∈ ΨN with p′(k) = h,

p′(k + 1) = `, and p′(j) = p(j) for all j 6= k, k + 1, so it follows that

∑
{p∈ΨN | p(k)=h, p(k+1)=`}

k−1∏
j=1

φp,j

N−1∏
j=k+1

φp,j =
∑

{p∈ΨN | p(k)=`, p(k+1)=h}

k−1∏
j=1

φp,j

N−1∏
j=k+1

φp,j. (A.7)

Let p ∈ ΨN with p(k) = ` and p(k + 1) = h, and p′ ∈ ΨN with p′(k) = h, p′(k + 1) = `, and

p′(j) = p(j) for all j 6= k, k + 1. According to (A.2), we have

φp,k =
σ2
k + σ2

k+1

−4(
∑k

m=1 α̂m + γp(m))
<

σ2
k + σ2

k+1

−4(
∑k

m=1 α̂m + γp′(m))
= φp′,k, (A.8)

since γh > γ`. Together with the fact that φp,k+1 = φp′,k+1, (A.3), (A.4), (A.5), (A.6), (A.7),

and (A.8) thus imply that ξ`,k < ξ`,k+1.

If k = N − 1, then we have

∑
{p∈ΨN | p(N−1)=`, p(N)=h}

N−1∏
j=1

φp,j =
∑

{p∈ΨN | p(N−1)=`, p(N)=h}

φp,N−1φp,N

N−2∏
j=1

φp,j, (A.9)
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and

∑
{p∈ΨN | p(N−1)=h, p(N)=`}

N−1∏
j=1

φp,j =
∑

{p∈ΨN | p(N−1)=h, p(N)=`}

φp,N−1φp,N

N−2∏
j=1

φp,j. (A.10)

As with the previous case, for every p ∈ ΨN with p(N − 1) = ` and p(N) = h, there exists a

p′ ∈ ΨN with p′(N − 1) = h, p′(N) = `, and p′(j) = p(j) for all j < N − 1, so it follows that

∑
{p∈ΨN | p(N−1)=`, p(N)=h}

N−2∏
j=1

φp,j =
∑

{p∈ΨN | p(N−1)=h, p(N)=`}

N−2∏
j=1

φp,j, (A.11)

Similarly, we if we let p ∈ ΨN with p(N − 1) = ` and p(N) = h, and p′ ∈ ΨN with

p′(N − 1) = h, p′(N) = `, and p′(j) = p(j) for all j < N − 1, then (A.2) implies that

φp,N−1 =
σ2
N−1 + σ2

N

−4(
∑N−1

m=1 α̂m + γp(m))
<

σ2
N−1 + σ2

N

−4(
∑N−1

m=1 α̂m + γp′(m))
= φp′,N−1. (A.12)

Thus, combining (A.3), (A.4), (A.9), (A.10), (A.11), (A.12) implies that ξ`,N−1 < ξ`,N . All

low-type households have equal occupation times at each rank, so that ξi,k = ξj,k = ξ`,k for

all households i, j that are low types with γi = γj = γ`, and thus because there are N − n
total low-type households, it must be that ξ`,k < 1/(N − n) for all k = 1, . . . , N . It follows,

then, that 0 < ξ`,1 < ξ`,2 < · · · < ξ`,N < 1/(N − n), a.s. A similar argument establishes that

1/n > ξh,1 > ξh,2 > · · · > ξh,N > 0, a.s.

Proof of Theorem 2.5. Suppose that household i is a low-type household with γi = γ`,

and household j is a high-type household with γj = γh. According to Proposition 2.4, we

have ξ`,1 < ξ`,2 < · · · < ξ`,N , a.s. and ξh,1 > ξh,2 > · · · > ξh,N , a.s. It follows, then, that

lim
τ→∞

E[ρt+τ (i) | γi = γ`] = ξ`,1 + 2ξ`,2 + · · ·+Nξ`,N >
N + 1

2
, (A.13)

where the last inequality follows because ξ`,N > 1/N and the expected value in (A.13) is

increasing in the value of ξ`,N despite the constraint that ξ`,1 + · · ·+ ξ`,N = 1. From (A.13),

we have

ξ`,1 + 2ξ`,2 + · · ·+Nξ`,N >
N + 1

2
,

N(ξ`,1 + 2ξ`,2 + · · ·+Nξ`,N) > 1 + 2 + · · ·+N,

32



which implies that

1−Nξ`,1 + 2− 2Nξ`,2 + · · ·+N −N2ξ`,N < 0,

1

n
− N

n
ξ`,1 +

2

n
− 2N

n
ξ`,2 + · · ·+ N

n
− N2

n
ξ`,N < 0. (A.14)

If we write (2.13) as

ξh,k =
1

n
(1− (N − n)ξ`,k) =

1

n
− N

n
ξ`,k + ξ`,k,

for all k = 1, . . . , N , then (A.14) implies that

ξh,1 − ξ`,1 + 2(ξh,2 − ξ`,2) + · · ·+N(ξh,N − ξ`,N) < 0,

and hence also

ξh,1 + 2ξh,2 + · · ·+Nξh,N < ξ`,1 + 2ξ`,2 + · · ·+Nξ`,N . (A.15)

Because household j is a high type, limτ→∞ E[ρt+τ (j) | γj = γh] = ξh,1 + 2ξh,2 + · · ·+Nξh,N ,

and hence it follows from (A.15) that

lim
τ→∞

E[ρt+τ (i) | γi = γ`] > lim
τ→∞

E[ρt+τ (j) | γj = γh]. (A.16)

Having shown in (A.16) that low-type households will on average in the long run occupy

lower ranks than high-type households, the last step is to show that the higher the rank of a

household at time t, the more likely that household is to be a high type. If some household i

occupies rank k at time t, so ρt(i) = k, for any rank k = 1, . . . , N , then the probability that

household i is a high type is

P (γi = γh | ρt(i) = k) =
nξh,k

(N − n)ξ`,k + nξh,k
= nξh,k,

where the second equality follows from (2.13). By Proposition 2.4, it follows that

1 > nξh,1 > nξh,2 > · · · > ξh,N > 0,

1 > P (γi = γh | ρt(i) = 1) > · · · > P (γi = γh | ρt(i) = N) > 0, (A.17)

and also that

0 < P (γi = γ` | ρt(i) = 1) < · · · < P (γi = γ` | ρt(i) = N) < 1. (A.18)
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Taken together, (A.16), (A.17), (A.18) imply that

lim
τ→∞

E[ρt+τ (i) | ρt(i) = k] = lim
τ→∞

E[ρt+τ (i) | γi = γh]P (γi = γh | ρt(i) = k)

+ lim
τ→∞

E[ρt+τ (i) | γi = γ`]P (γi = γ` | ρt(i) = k),

is increasing in k.
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