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Random Growth in Economics

Random growth theory posits that entities X1, . . . ,Xn grow according to

logXi (t + 1) − logXi (t) = gi (t) + σi (t)Bi (t),

where σi (t) > 0 and Bi (t) ∼ N(0, 1). In continuous time, this becomes

d logXi (t) = gi (t) dt + σi (t) dBi (t).

Many applications of random growth in economics

I Firm size: Luttmer (QJE 2007)

I City size: Gabaix (QJE 1999)

I Income, wealth distributions: Gabaix, Lasry, Lyons, Moll (ECMA 2018)
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Random Growth in Finance?

Let X1, . . . ,Xn be the value of assets in a financial market

d logXi (t) = gi (t) dt + σi (t) dBi (t)

Asset values X1, . . . ,Xn change over time, and these changes

generate capital gains and hence contribute to returns

I Are dynamics of Xi endogenous or exogenous?

Parameters gi and σi affect both asset returns and the distribution of

asset values

dXi (t)

Xi (t)
=

(
gi (t) +

σ2i (t)

2

)
dt + σi (t) dBi (t)
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Rank-Based Random Growth

d logXi (t) = gi (t) dt + σi (t) dBi (t)

Parameters gi and σi depend on many economic and financial factors,

and are changing over time

I Very difficult to accurately estimate parameters

Consider simple random growth model in which parameters gi and σi

depend only on asset value rank

I Rank-based parameters gk and σk shape distribution (Fernholz, 2017)

I If distribution is stable, rank-based parameters should also be stable
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Applications

Normalized commodity futures prices

I Distribution of commodity values is stable over time, which implies

higher growth rates at lower ranks

I Leads to predictable excess returns (Fernholz & Fernholz, 2022)

Market capitalizations of U.S. stocks

I Distribution of stock market capitalizations is stable over time and

well-described by rank-based parameters (Fernholz & Karatzas, 2009)

I Parameters both shape distribution and lead to well-known size effect

Extensions of simple rank-based random growth model

I Ichiba et al. (2011), Benhabib, Bisin, & Fernholz (2022)
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Normalized Commodity Futures Prices
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Returns for Portfolios of Commodity Futures
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Rank-Based Growth Rates
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Predicted vs. Actual Distribution of Commodity Values
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Predicted vs. Actual Distribution of Market Capitalizations
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Rank-Based Random Growth

Consider a financial market consisting of n assets with values X1, . . . ,Xn

that grow according to

d logXi (t) = grt(i)(t) dt + σrt(i)(t) dBi (t),

where rt(i) is the value-rank of asset i at time t, σ21, . . . , σ
2
n are positive

constants, and g1, . . . , gn are constants satisfying g1 + · · · + gn = 0.

Parameters gk measure relative growth rates at different ranks

(normalization g1 + · · · + gn = 0 is without loss of generality)

Parameters σk measure variance at different ranks
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Stationary Distribution of Relative Values

d logXi (t) = grt(i)(t) dt + σrt(i)(t) dBi (t) (1)

Suppose that the model (??) satisfies g1 + · · · + gk < 0 for all

k = 1, . . . , n − 1 and σ2k+1 − σ2k = σ2k − σ2k−1, for all k = 2, . . . , n − 1.

Then the ranked relative values are stationary and satisfy

E[logX(k)(t) − logX(k+1)(t)] =
σ2k + σ2k+1

−4(g1 + · · · + gk)
,

for all k = 1, . . . , n − 1 (Ichiba et al., 2011). Note that X(1), . . . ,X(n) are

ranked by value, so X(1) ≥ X(2) ≥ · · · ≥ X(n).
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Stationary Asset Values and Efficient Markets

dXi (t)

Xi (t)
=

(
grt(i)(t) +

σ2rt(i)

2

)
dt + σrt(i)(t) dBi (t),

A stationary, or at least non-degenerate, relative value distribution seems

reasonable. How can such a market be efficient?

Entry/Exit

I If assets enter and exit with sufficient frequency, then do not need

higher growth rates at lower ranks (Fernholz & Koch, 2021)

I Important consideration for equities, less so for commodity futures

Dividends

I Higher-ranked assets can pay more dividends
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Stationary Asset Values and Efficient Markets

dXi (t)

Xi (t)
=

(
grt(i)(t) +

σ2rt(i)

2

)
dt + σrt(i)(t) dBi (t),

A stationary, or at least non-degenerate, relative value distribution seems

reasonable. How can such a market be efficient?

Risk

I Lower-ranked assets can be riskier, so higher returns on these assets

compensate for their greater risk

I Asset rank, with rank based on asset value, as a risk factor

(Fama & French, 1992; Asness et al., 2013)
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Commodity Futures

“Value” of Commodity Futures

Monthly futures prices for 26 commodities from 1969-2018

I Focus on two-month futures contracts, which are among most liquid

I Commodity futures do not pay dividends and rarely “exit”

Value of two-month commodity futures is normalized price

I Set all futures values equal to each other on first month, with all

subsequent changes in (log) value equal to changes in (log) price

I Commodities that enter later have (log) value set equal to average

I Similar to Asness, Moskowitz, & Pedersen (JF 2013)
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Commodity Futures

Implied Commodity Futures Prices

Not all commodities have two-month futures contracts in all months, so

we define implied two-month futures prices that exist in all months.

The implied two-month futures price at time t for commodity i is

logXi (t) = (2 − ν)κi (t) + log Fi (t, t + ν),

where Fi (t, t + ν) is the futures price at time t with expiration t + ν

(closest possible expiration to t + 2), and

κi (t) =
log Fi (t, t + ν2) − log Fi (t, t + ν1)

ν2 − ν1
,

with t + ν1 and t + ν2 expiration dates closest to t + 2.
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Commodity Futures

Implied Commodity Futures Prices

The implied two-month futures price at time t for commodity i is

logXi (t) = (2 − ν)κi (t) + log Fi (t, t + ν),

where Fi (t, t + ν) is the futures price at time t with expiration t + ν

(closest possible expiration to t + 2), and

κi (t) =
log Fi (t, t + ν2) − log Fi (t, t + ν1)

ν2 − ν1
,

with t + ν1 and t + ν2 expiration dates closest to t + 2.

Implied two-month futures price adjusts and interpolates using existing

futures contracts. Note that if two-month futures contract exists, then

implied price equals actual price: Xi (t) = Fi (t, t + 2).
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Commodity Futures

Implied Two-Month Commodity Futures Prices
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Commodity Futures

Portfolios of Commodity Futures

Four portfolios, each rebalanced monthly

I Value-weighted: wi (t) = Xi (t)
X1(t)+···+Xn(t)

I Equal-weighted: wi (t) = 1
n

I Diversity-weighted: wi (t) =
X p
i (t)

X p
1 (t)+···+X p

n (t)
, with p = −0.5

I Reverse value-weighted: wi (t) =
X(n+1−rt (i))(t)

X1(t)+···+Xn(t)
(need to introduce rt(i))

Value-weighted portfolio places most weight on high ranks, while

reverse-weighted portfolio places most weight on low ranks

I Vervuurt & Karatzas (2015) examine diversity-weighted prt. with p < 0

I Fernholz & Fernholz (2022) examine reverse-weighted portfolio
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Commodity Futures

Portfolios of Commodity Futures

Portfolios all hold two-month futures contracts if possible

I If not, hold the contract with the next expiration horizon greater than

two months

I Commodity values are normalized prices, so wait five years after price

data start date before including a commodity in portfolios

I All portfolios are rebalanced monthly, so they should all have similar

transaction costs

I Similar to Asness, Moskowitz, & Pedersen (JF 2013)
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Commodity Futures

Carry

The change in the implied two-month futures price, ∆ logXi (t), is not

necessarily equal to the return from holding the underlying commodity

futures contract, ∆ log Fi (t, τ), where τ ≥ t + 2.

We refer to the difference between these two quantities as the carry:

Ci (t) = ∆ log Fi (t, τ) − ∆ logXi (t).

The carry measures the gap between the returns from holding commodity

futures contracts and changes in the implied futures prices.
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Commodity Futures

Carry and Market Efficiency

∆ log Fi (t, τ) = ∆ logXi (t) + Ci (t)

Rank-based theory suggests low-ranked commodity values, Xi , grow

faster than high-ranked values

I Necessary for a stationary value distribution in the absence of entry/exit

I Points to higher returns at low ranks in the absence of dividends

How can this market be efficient?

I Need more negative carry at lower ranks

I Assuming risk properties at high and low ranks are similar
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Commodity Futures

Returns for Portfolios of Commodity Futures
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Commodity Futures

Returns for Portfolios of Commodity Futures
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Commodity Futures

Rank-Based Growth Rates
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Commodity Futures

Carry
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Commodity Futures

Interpretation

Asness, Moskowitz, & Pedersen (JF 2013) find a similar result

I Rank commodity futures based on current price relative to average

price 4.5-5.5 years ago

I High “value” commodities outperform low “value” commodities

I Posit a general value factor affecting many different asset markets

Rank-based random growth model has complementary interpretation

I Low-ranked (high-value) commodities must grow faster for stationarity

I Puzzle is that differential carry does not cancel out the higher growth

rate of low-ranked commodities

I Any risk factor should explain differential carry that is too small
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Commodity Futures

The Distribution of Relative Commodity Values

For a rank-based random growth model of the form

d logXi (t) = grt(i)(t) dt + σrt(i)(t) dBi (t),

the stationary ranked relative values satisfy

E[logX(k)(t) − logX(k+1)(t)] =
σ2k + σ2k+1

−4(g1 + · · · + gk)
,

for all k = 1, . . . , n − 1.

Follow the procedure described by Fernholz (2017) to estimate the

rank-based parameters gk and σk for implied two-month futures prices

from 1995-2018.
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Commodity Futures

Rank-Based Growth Rates
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Commodity Futures

Rank-Based Variances
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Commodity Futures

Simulations of Rank-Based Model

If g1 + · · · + gk < 0 for all k = 1, . . . , n − 1 and σ2k+1 − σ2k = σ2k − σ2k−1,

for all k = 2, . . . , n − 1, then the stationary ranked relative values are

stationary and satisfy

E[logX(k)(t) − logX(k+1)(t)] =
σ2k + σ2k+1

−4(g1 + · · · + gk)
, (2)

for all k = 1, . . . , n − 1.

However, the estimated parameters σk do not clearly satisfy the linearity

condition for (??). The solution is to simulate a rank-based model with

the esitmated parameters gk and σk .
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Commodity Futures

Simulated vs. Actual Distribution of Commodity Values
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Stock Market Capitalizations

Stock Returns and the Distribution of Market Caps

d logXi (t) = grt(i)(t) dt + σrt(i)(t) dBi (t),

One insight of rank-based random growth model is link between

distribution of relative asset values and asset returns

I Rank-based parameters gk and σk shape the relative value distribution

and also affect returns

For stocks, this insight implies a link between distribution of stock

market capitalizations and stock returns

I Capital gains lead to changes in market capitalization of stocks

I Dividends also impact stocks returns, but capital gains more important
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Stock Market Capitalizations

Stock Returns and the Distribution of Market Caps

Let X1, . . . ,Xn denote the market capitalizations (values) of the n stocks

in the market. If certain regularity conditions are satisfied, then the

stationary distribution of market caps satisfies

E[logX(k)(t) − logX(k+1)(t)] =
σ2k + σ2k+1

−4(g1 + · · · + gk)
,

for all k = 1, . . . , n − 1.

Follow the procedure described by Fernholz & Koch (2021) to estimate

the rank-based parameters gk and σk for U.S. stocks from 1990-1999.
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Stock Market Capitalizations

Rank-Based Parameters for Market Capitalizations
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Stock Market Capitalizations

Stock Returns and the Distribution of Market Caps

Let X1, . . . ,Xn denote the market capitalizations (values) of the n stocks

in the market. If the rank-based growth rates satisfy g1 = · · · = gn−1 = g ,

then the stationary distribution of market caps satisfies

E[logX(k)(t) − logX(k+1)(t)]

log(k) − log(k + 1)
≈ −

k(σ2k + σ2k+1)

4kg
= −

σ2k + σ2k+1

4g
,

for all k = 1, . . . , n − 1.

In a log-log plot of size vs. rank, stock market capitalization distribution

curve will be concave if σ2k is linearly increasing in k .

In this market, entry/exit of stocks ensures stationarity since growth rates

are not higher at lower ranks (unlike closed commodity futures market).
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Stock Market Capitalizations

Predicted vs. Actual Distribution of Market Capitalizations
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Stock Market Capitalizations

The Size-Effect Revisited

dXi (t)

Xi (t)
=

(
grt(i)(t) +

σ2rt(i)

2

)
dt + σrt(i)(t) dBi (t),

What do constant rank-based growth rates gk and linearly increasing

rank-based variances σ2k imply for stock returns?

I Higher σk at low ranks implies higher returns at low ranks, all else equal

Well-known size effect follows from shape of market cap distribution

I Banz (1981), Fernholz & Karatzas (2009), Banner et al. (2019)
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Stock Market Capitalizations

Interpretation

Size effect for equities is a well-known anomaly

I Many potential explanations: risk, liquidity, mismeasurement

I Banz (1981), Fama & French (1992), Vayanos (2003), Van Dijk (2011)

I Size (SMB) is an important and common factor in asset pricing models

Rank-based random growth model offers a novel interpretation

I Rank-based parameters gk and σk shape the market cap distribution

I These parameters also affect returns for different size-ranked stocks

I Size risk factor is related to the shape of the size distribution

I “Value” anomaly for commodities and size effect for stocks are related
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A Model with Persistent Heterogeneity

The standard rank-based random growth model

d logXi (t) = grt(i)(t) dt + σrt(i)(t) dBi (t), (3)

seems to decently describe relative commodity price and stock market cap

distributions. However, this model is overly simplistic in some ways.

The extension of the standard rank-based random growth model

d logXi (t) =
(
grt(i)(t) + γi

)
dt + σrt(i)(t) dBi (t),

where σ21, . . . , σ
2
n are positive constants and g1, . . . , gn, γ1, . . . , γn are

constants satisfying two regularity conditions (Ichiba et al., 2011),

captures richer dynamics than the standard model (??).
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A Model with Persistent Heterogeneity

d logXi (t) =
(
grt(i)(t) + γi

)
dt + σrt(i)(t) dBi (t)

Parameters γi allow for persistent heterogeneity across assets/entities

I Assets with high γi spend more time at high ranks

I If assets with high γi grow more slowly than aggregate when in top

ranks, then model is stationary (Ichiba et al., 2011)

I Non-ergodic model

I Accurately estimating all parameters from data can be quite challenging
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U.S. Market Caps Distribution Pre-2020 vs. End-2020
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Wealth Distribution and Long-Run Mobility

Surprising findings for long-run mobility that are impossible to match

using standard random growth models of wealth distribution

I Wealth-rank coefficient after 585 years is 0.1: Barone & Mocetti (2021)

I Both parent and grandparent wealth-rank have predictive power for

child wealth-rank: Boserup, Kopczuk, & Kreiner (2014)

Rank-based model of intergenerational wealth dynamics with

persistent heterogeneity can match all of these observations

I Benhabib, Bisin, & Fernholz (2022)
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City Size Distributions

According to Soo (2005), some city size distributions are neither

Zipfian nor quasi-Zipfian

I France, Argentina, Russia, Mexico, New York State, etc.

I Largest cities are fundamentally, persistently different from the rest

Davis & Weinstein (2002) show that after the destruction of WWII,

the cities that grew to be largest were the same as those from before

I Japanese city growth depends on size and locational fundamentals

Both of these observations can be captured via a rank-based model

with persistent heterogeneity
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The End

Thank You
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