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1. Introduction

The U.S. banking sector has undergone a major transformation over the
last half century. A small group of the largest banks holds more assets than
ever before, a trend that accelerated after large-scale bank deregulation in
the late 1990s [18, 17]. The ten largest bank-holding companies controlled
about 70 percent of total bank assets by 2010. In contrast, the ten largest
European commercial banks saw their share of total assets fall by one third
from 2008-2016.

Using rank-based empirical methods, we explore the causes and implica-
tions of the rise of big U.S. banks and the fall of big European banks (Figure
1). Our general methods, which follow Fernholz [9], statistically decompose
the stationary distribution of bank assets in terms of only two factors —
the reversion rates and idiosyncratic volatilities of bank assets. The rever-
sion rates measure the relative asset growth rates of different size-ranked
banks, and capture the pace of cross-sectional mean reversion and the nat-
ural tendency of the largest institutions to grow slower than the aggregate
bank population. Higher reversion rates, which mean faster cross-sectional
mean reversion, imply less bank asset concentration. Idiosyncratic volatility,
on the other hand, propels individual institutions away from the center of
the distribution and increases asset dispersion and concentration at the top.
In the banking context, idiosyncratic volatility thus has a dual role — as a
source of aggregate risk [1, 22] and also as a shaping factor of concentration.
Our empirical framework allows us to simultaneously investigate changes in
both idiosyncratic bank asset volatility and the power law structure of the
bank size distribution.

We show that both U.S. bank reversion rates and idiosyncratic asset
volatilities decreased from 1986-2016 (Figures 2 and 3). This decline in re-
version rates implies higher relative asset growth rates for the largest banks
and explains the rise of big U.S. banks. In contrast, the fall of big Euro-
pean banks since 2008 is explained by a decline in the relative asset growth
rates of the largest European banks. Over this same time period, the id-
iosyncratic volatilities of European bank assets do not meaningfully change.
Our contrasting results for U.S. and European asset reversion rates are con-
sistent with recent analyses of the diverging evolution of market power and
concentration in the U.S. versus Europe [21].

A growing literature emphasizes idiosyncratic, firm-specific shocks as a
potential source of aggregate volatility, especially when firm size distributions
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are right-skewed and follow power laws [13]. Carvalho and Gabaix [6], for
example, show that “fundamental volatility” — volatility derived from mi-
croeconomic shocks alone — may be an important contributor to aggregate
macroeconomic volatility. Acemoglu et al. [1] and Caballero and Simsek [5]
show that firm-specific shocks are most likely to affect aggregate macroeco-
nomic outcomes in industries with complex and opaque interlinkages. Mo-
tivated by these insights, Amiti and Weinstein [2] show that idiosyncratic
granular bank supply shocks explain almost half of aggregate loan and in-
vestment fluctuations in Japan. Blank et al. [3] and Buch and Neugebauer
[4] link idiosyncratic shocks at the largest European banks to changes in real
GDP growth and financial stability.

We introduce the concept of heterogeneous fundamental volatility by ex-
tending the theoretical framework of Gabaix [13] to allow for idiosyncratic,
bank-specific asset volatilities that vary across different size-ranked banks.
Using this concept, we show that the decline in the idiosyncratic asset volatil-
ities of the largest U.S. banks has lowered the fundamental volatility of U.S.
bank assets after the mid-1990s. Crucial to this result is rank-based het-
erogeneity of idiosyncratic volatility. If idiosyncratic asset volatilities had
not decreased at the largest U.S. banks over the past decade, then funda-
mental volatility would have increased. For the European banking sector,
rank-based variation in idiosyncratic asset volatility is less important. Fun-
damental volatility of European bank assets declined since 2008, and this
decline is mostly a result of the fall in European bank asset concentration
over this same time period.

We also uncover a tighter link between fundamental and aggregate as-
set volatility for U.S. banks relative to European banks. For this result,
aggregate volatility is defined as the volatility of all bank assets together.
These contrasting results suggest that idiosyncratic, bank-specific shocks are
an important driver of aggregate asset volatility in the U.S., while common,
aggregate shocks that affect the entire banking sector such as the recent
sovereign debt crisis are more important in Europe.

2. Data and Methods

In this section, we discuss our data and the rank-based econometric meth-
ods we use to analyze these data.
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2.1. Bank-Level Data

We consider U.S. bank-holding companies that have to file quarterly bal-
ance sheets and income statements with the Federal Reserve.1 These quar-
terly balance sheets are publicly available from the Federal Financial Institu-
tions Examination Council (FFIEC). Since this paper focuses on the factors
that shape the size distribution, the only variable we use is total institution
assets, which is mnemonic BHCK2170 from regulatory form FR Y-9C.

We extract regulatory data from the so-called “call” reports. This is a
repeated N × T cross-section where N is the number of banks in the cross-
section and T is the quarter. Within our sample, the maximum number of
bank-holding companies in a quarter is 2,338 (2005 Q2), and the minimum
number in a quarter is 650 (2016 Q3). Because bank size thresholds for
required reporting vary over time, the sampling of quarterly reports also
varies over time. Our empirical approach requires a fixed number of ranks
over time, so we size-rank all banks within reporting quarter and restrict our
analysis to the largest 500 bank-holding companies each quarter. Despite
the time variation in the number of reporting banks, by focusing on the 500
largest bank-holding companies we are able to cover the vast majority of U.S.
bank assets throughout our 1986 Q2 - 2016 Q3 sample period.

The total assets of European commercial banks from 2008 Q1 - 2016
Q3 are obtained from S&P Global Market Intelligence. As with U.S. bank-
holding companies, we do not follow a fixed panel of European banks but
instead focus on a changing set of the 100 largest banks by U.S.$ assets in
each quarter. Over our 2008 Q1 - 2016 Q3 sample period, the number of
banks ranges from 697 (2016 Q2) to 138 (2008 Q1). We restrict our analysis
to commercial banks in 23 developed European countries which include all
countries on the Euro as of 2010 as well as the Czech Republic, Denmark,
Iceland, Norway, Sweden, Switzerland, and the United Kingdom.

Because we follow U.S. and European banks over many years, entry and
exit as well as other factors constantly change the individual banks that
occupy the top ranks. For example, if one bank merges with another, then
the target bank drops out of the data set while the acquiring bank remains
in the data set and grows larger. Conversely, if a bank divests some of its
assets and the spin-off is a new bank, then both entities will be in the data

1A bank-holding company is defined as a company that owns a deposit-taking financial
institution (see Chapters 16 and 17 of Title 12 of the United States Code from 1841).
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set going forward, with the original bank smaller than before the divestiture.
Thus, we do not follow a fixed panel of banks every quarter, but instead a
changing set of the largest banks in each quarter.

2.2. Rank-Based Methods

We use the rank-based empirical methods for dynamic power law distri-
butions detailed by Fernholz [9] to characterize the distribution of U.S. and
European bank assets. These methods are a multivariate extension of the sin-
gle random growth process studied by Gabaix [11], and yield an asymptotic
identity that describes the asset distribution according to the relationship

bank asset concentration =
idiosyncratic volatility of bank assets

reversion rates of bank assets
. (1)

This statistical decomposition motivates our empirical strategy. In particu-
lar, (1) implies that any increase in bank asset concentration must be caused,
in an econometric sense, by either an increase in idiosyncratic asset volatility
or a decrease in reversion rates. Intuitively, higher volatility causes bank
assets to become dispersed and concentrate at the top, and lower reversion
rates, which imply slower reversion to the mean, cause bank assets to stay
concentrated at the top.

In order to characterize the distribution of bank assets using our frame-
work, it is necessary to consider the dynamics of bank assets by rank. Typ-
ically, bank-level empirical work estimates moments related to individual
banks, such as Bank of America, J.P. Morgan, or Wells Fargo. Individual
banks dynamically move through the bank size distribution. For example,
an individual bank might temporarily grow faster than similar sized banks,
and hence will rise in size-rank over time. If the pace of these rank crossings
changes over time, this will change the bank size distribution itself. A sta-
tionary distribution is characterized by stable asset shares for each size-rank.

Figure 1 shows the changing asset shares of the top 10 and top 11-100
largest U.S. (left panel) and European (right panel) banks. Let θi(t) be the
share of total assets held by bank i at time t, for i = 1, . . . , N , and let θ(k)(t)
be the share of total assets held by the k-th largest bank at time t, so that
θ(1)(t) ≥ · · · ≥ θ(N)(t) for all t. In terms of θ(k), Figure 1 plots the evolution
of θ(1)(t) + · · · + θ(10)(t) and θ(11)(t) + · · · + θ(100)(t) over time. This figure
shows a clear rise in U.S. bank asset concentration starting in the 1990s and
a fall in European bank asset concentration starting in 2008.
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Idiosyncratic Volatilities σk. The idiosyncratic volatilities σk are defined as
the time-averaged volatility of the relative asset holdings of the k-th and
(k + 1)-th largest banks, for each pair of adjacent ranks k, k + 1 in the
distribution. As with the growth rates that determine the reversion rates
αk, the relative asset volatilities used to calculate σk can vary over time and
across any bank characteristics. These different and changing volatilities are
averaged over time for each pair of adjacent ranks k, k + 1, and this yields
rank-based volatilities σk. In the presence of both idiosyncratic, bank-specific
shocks and aggregate shocks, these volatility parameters will measure only
the intensity of idiosyncratic shocks since aggregate shocks that affect all
banks have no impact on the relative asset holdings of adjacent banks in the
distribution.

Reversion Rates −αk. The reversion rates −αk are defined as minus the
time-averaged limit of the expected growth rate of assets for the k-th largest
bank, for each rank k. The expected growth rates used to calculate αk can
vary over time and across any bank characteristics. The key insight is that by
averaging these different and changing growth rates over time for each rank k,
we obtain rank-based relative growth rates αk that allow us to characterize
the distribution of bank assets, as we shall describe below. The relative
growth rates αk are a measure of the rate at which bank assets revert to the
mean. We refer to the −αk as reversion rates, since lower values of αk (and
hence higher values of −αk) imply faster cross-sectional mean reversion.

The reversion rates reflect size-dependent constraints on growth such
as size-dependent capital requirements for globally systemically important
banks [G-SIBs as in 16, 7]. These also encompass economic mechanisms such
as entry and exit, mergers and acquisitions, and regulatory and competition
policy in the banking sector [18, 19], as well as the preferences, constraints,
and strategic choices that drive asset growth for different sized banks [7].

Theorem 2.1. If there is a stationary distribution of bank assets, then for
k = 1, . . . , N , this distribution satisfies

E
[
log θ(k)(t) − log θ(k+1)(t)

]
=

σ2
k

−4(α1 + · · · + αk)
. (2)

Theorem 2.1 provides an analytic rank-by-rank characterization of the
entire distribution of bank assets that matches the intuitive form of (1).2

2This theorem is from Fernholz [9], and we refer the reader there for the proof.
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The theorem yields a system of N − 1 equations which together with the
identity θ(1) + · · · + θ(N) = 1 can be solved to yield the asset shares held
by every single ranked bank θ(k). Because the asset shares θ(k) describe the
cumulative distribution function (CDF) of the distribution of bank assets,
we thus have a full characterization of the distribution of bank assets.

According to Theorem 2.1, two factors shape the bank size distribution.
The first factor is the idiosyncratic volatilities of bank assets, σk, and the
second factor is the reversion rates of bank assets, measured by −αk. Because
the left-hand side of (2) corresponds to the y-axis of a log-size versus log-
rank plot, we see that variation in both factors across different ranks in the
distribution allows more flexibility for the shape of the bank size distribution
than simpler formulations based on the equal volatilities and growth rates
imposed by Gibrat’s law [11, 12]. In terms of the idiosyncratic volatilities
σk and relative growth rates αk, Gibrat’s law is equivalent to there existing
some common σ > 0 and α < 0 such that σ = σ1 = · · · = σN−1 > 0 and
α = α1 = · · · = αN−1 < 0. Clearly, then, Gibrat’s law is a special case of the
general rank-based characterization (2).

Theorem 2.1 shows that an increase in reversion rates lowers the con-
centration of bank assets. An increase in idiosyncratic volatility raises the
concentration of bank assets. Any change in the bank size distribution is
caused by a corresponding change in at least one of these two factors that
shape the distribution. By analyzing how these two shaping factors change
over time we can determine the cause, in an econometric sense, of the rise of
U.S. big banks and the fall of European big banks.

2.3. Estimation

We follow the econometric procedure described by Fernholz [9] to esti-
mate the idiosyncratic volatilities σk and reversion rates −αk. However, this
procedure is more complicated using data on bank assets over time because of
the changes in the size distribution that have occurred in the last few decades.
Figure 1 shows that both the U.S. and European bank size distributions go
through a transition from one distribution to another.

In the context of our empirical approach, we model this as one-time per-
manent changes in idiosyncratic volatilities σk and reversion rates −αk that
occurred between 1986-2016 for the U.S. and between 2008-2016 for Europe.
These permanent changes in the parameters σk and αk thus lead to transi-
tions and then new stationary distributions. It is necessary, then, to estimate
the quarter in which each transition began as well as two sets of reversion

7



rates and volatilities for each transition — one before the start, and one after
it.

For each of the U.S. and Europe, we first select a quarter as the start date
for the transition from one distribution to another. Next, we estimate two
sets of idiosyncratic volatilities σk and reversion rates −αk using data be-
fore and after our transition start date (this follows the procedure described
above). Finally, we calculate the root mean squared error (RMSE) between
the observed log asset shares θ(k) and those predicted by our estimated rever-
sion rates and volatilities according to (2). This procedure is repeated over a
set of plausible start dates for the transition from one distribution to another,
and then choose the transition start date that minimizes the RMSE. This
data-driven transition start date is 1998 Q3 for U.S. banks and 2011 Q4 for
European banks (see Figure 7). This procedure of estimating two sets of pa-
rameters and then comparing predicted and actual asset shares both before
and after the transition start date does not explicitly capture the transition
from one distribution to the other. It has the advantage of simplicity and
tractability.

3. U.S. and European Bank Size Dynamics

The intuitive version of our statistical decomposition (1) motivates our
empirical strategy. By estimating idiosyncratic volatilities σk and reversion
rates −αk for U.S. and European banks, we can examine how these two
shaping factors changed over time. According to Theorem 2.1, this analysis
offers an econometric explanation of the changing bank size distributions
observed in Figure 1.

3.1. Idiosyncratic Volatilities

In the left panel of Figure 2, we plot the estimated standard deviations of
the idiosyncratic volatilities of asset holdings for the 500 largest U.S. banks
from 1986 Q2 - 1998 Q3 and 1998 Q4 - 2016 Q3. This figure shows that the
idiosyncratic asset volatilities for banks decreased after 1998 Q3, with the
largest decreases occurring for medium-sized banks. In the Online Appendix,
we extend the results of Fernholz and Koch [10] and report the statistical
significance of these changes. Consistent with Figure 2, the significance of
the changes in σk is in fact largest for medium-sized banks (see the left panel
of Figure 14).
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In contrast, the right panel of Figure 2 shows that the standard deviations
of the idiosyncratic volatilities of asset holdings for the 100 largest European
banks are approximately unchanged from 2008 Q1 - 2011 Q4 to 2012 Q1
- 2016 Q3. According to the decomposition (1), the relatively constant id-
iosyncratic volatilities for European banks suggest that the relative growth
rate of assets for the largest European banks went down from 2008-2016. We
confirm this in Section 3.2.

In Figure 4, we plot five-quarter rolling window estimates of U.S. (left
panel) and European (right panel) idiosyncratic bank volatilities for various
size-ranked subsets.3 This figure demonstrates that, with the exception of
a spike around the financial crisis of 2008, U.S. bank asset volatilities have
gradually declined since the late 1990s. For the top-ranked, largest banks,
the figure shows that the lowest idiosyncratic volatilities on record have oc-
curred in the last few years, while the asset volatilities of all U.S. banks
have been remarkably low and stable by historical standards since the global
financial crisis. The right panel of Figure 4 shows that, despite the Euro-
pean sovereign debt crisis, the idiosyncratic volatility at European banks was
roughly constant and similar to the level for U.S. banks since 2009.

3.2. Reversion Rates

According to (2) from Theorem 2.1, the observed rise of big U.S. banks
shown in the left panel of Figure 1 must be caused by either an increase
in idiosyncratic volatilities σk, a decrease in reversion rates −αk, or both.
Given the observed decrease in idiosyncratic asset volatilities of U.S. banks
(σk) from Figure 2, then, it must be that cross-sectional mean reversion (−αk)
decreased in 1998 Q4 - 2016 Q3 relative to 1986 Q2 - 1998 Q3. Similarly,
the fall of European big banks shown in the right panel of Figure 1 must
be caused by either a decrease in idiosyncratic volatilities σk, an increase in
reversion rates −αk, or both.

Figure 3 substantiates both predictions. The left panel shows a decline
in mean reversion of U.S. bank assets from 1986 Q2 - 1998 Q3 to 1998 Q4
- 2016 Q3. This fall more than offsets the fall in idiosyncratic volatility and
led to the rise in U.S. bank asset concentration. Because the parameters
αk measure relative asset growth rates for different ranked banks, Figure 3

3In contrast to the volatilities shown in Figure 2, the rolling window estimates in Figure
4 are not smoothed so as to best match the bank size distributions in different time periods.

9



shows that the asset growth rates of the largest U.S. banks rose by more than
0.5 percentage points relative to all banks after 1998 Q3. Big U.S. banks now
stay bigger for longer. The significant change in regulation for the largest U.S.
banks in the 1990s is one explanation for this decline in mean reversion rates.
Both the repeal of Glass-Steagall through the Gramm-Leach-Bliley Act [20],
which had previously separated commercial and investment banking, and the
removal of inter-state branching restrictions [18, 19, 8] imply relatively faster
asset growth for the largest banks and hence less mean reversion.4

In contrast to the reduced pivot around the midpoint shown in the left
panel of Figure 3, the right panel shows a relatively uniform rise in mean
reversion of European bank assets from 2008 Q1 - 2011 Q4 to 2012 Q1 -
2016 Q3. This decrease in the relative asset growth rates of larger European
banks led to the fall in European bank asset concentration.5 The contrast-
ing changes in U.S. and European asset reversion rates shown in Figure 3
highlight the diverging evolution of regulation and market power in the U.S.
versus Europe [21].

3.3. Goodness of Fit

We can see from Figures 2 and 3 that the shaping parameters σk and
αk vary across different ranked banks in both the U.S. and Europe. Such
variation in growth rates and idiosyncratic volatilities across different ranks
is inconsistent with Gibrat’s law, the special case of our general approach
discussed in Section 2. In this sense, our rank-based framework generalizes
previous studies based on the equal volatilities and growth rates imposed by
Gibrat’s law in a way that allows us to better match the empirical bank size
distribution.

The left panel of Figure 5 shows the average share of total assets held by
different ranked U.S. banks from 1986 Q2 - 1998 Q3 together with the shares
predicted for these banks using equation (2) from Theorem 2.1 estimated
over this same time period.6 The right panel of Figure 5 shows these same

4Furthermore, Table 1 in the Online Appendix shows that the Gramm-Leach-Bliley
Act coincides with statistically significant increases in the log-log slope of bank size versus
rank.

5Figure 14 in the Online Appendix reports the statistical significance of the decline in
the parameters αk and reveals that the most significant declines occur for medium-sized
European banks, consistent with the magnitudes observed in Figure 3.

6The figure displays asset shares as a function of rank, using log scales for both axes.
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quantities for different ranked U.S. banks from 1998 Q4 - 2016 Q3. These
two panels are constructed using the cross-sectional idiosyncratic volatility σk
and mean-reversion −αk parameters from the left panels of Figures 2 and 3.
Together with (2), these parameter values yield stationary distribution values
for each rank asset share θ(k). As the two figures demonstrate, equation (2)
estimated over these two different time periods is able to accurately match
the observed U.S. bank size distribution. Furthermore, the predicted shares
generate an increased concentration in bank assets for the 1998 Q4 - 2016
Q3 time period.

Similarly, Figure 6 shows the average and predicted shares of total assets
held by different ranked European banks from 2008 Q1 - 2011 Q4 and 2012
Q1 - 2016 Q3. As with the U.S. data, the decomposition (2) is able to
approximately match the observed European bank size distributions before
and after transition despite a relatively small sample of 33 quarters. The
predicted shares also generate a decreased concentration of European bank
assets for the 2012 Q1 - 2016 Q3 time period, consistent with Figure 1.

The solid red line in the left panel of Figure 7 reports the root mean
squared error (RMSE) between the predicted and observed log U.S. bank
asset shares before and after the transition from small to big banks using
different transition start dates (right axis). As mentioned earlier, the min-
imum RMSE occurs with a 1998 Q3 transition start date, and thus we use
this date for our analysis in this section.7 Similarly, the right panel of Fig-
ure 7 shows that the minimum RMSE between predicted and observed log
European bank asset shares occurs with a transition start date of 2011 Q4.

In the Online Appendix, we also consider the estimated log-log slope of
bank assets versus rank for the top 100 largest U.S. banks and the top 40
largest European banks using the well-known Hill estimator [15] and the
more recent “Rank − 1/2” OLS estimator [14]. These estimates are shown
in Figure 11. In order to examine the consistency of our RMSE analysis
using our novel dynamic power law methods, we report in Figure 7 the t-
statistics of Zivot-Andrews breakpoint tests using the Hill and Rank - 1/2
OLS estimates from Figure 11. For the U.S., both t-statistics generate large
and statistically significant values on dates close to the 1998 Q3 date chosen

As discussed in Gabaix [12], if asset shares follow a Pareto distribution, then such a figure
will appear as a straight line.

7Note that transition start dates outside of the range in Figure 7 — before 1996 Q2 or
after 2001 Q2 — generate substantially larger RMSEs.
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by our RMSE analysis. Similarly, the right panel of Figure 7 demonstrates
the statistical significance of Zivot-Andrews t-statistics on dates close to the
2011 Q4 date chosen by our RMSE analysis for European banks.

4. Fundamental Volatility

Our estimates of the idiosyncratic asset volatilities from Section 3 to-
gether with the changing share of assets held by the largest banks enable
us to examine the dynamics of fundamental volatility in both the U.S. and
European banking sectors. To clarify our contribution, we benchmark our
measure of fundamental volatility, which allows for rank-based heterogene-
ity in idiosyncratic volatility, to standard measures of fundamental volatility
that impose uniform volatility across all size-ranks. Finally, we compare fun-
damental volatility in the banking sector to the aggregate volatility of bank
assets.

4.1. A Rank-Based Approach

Let ai(t) denote the assets held by bank i at time t, and a(k)(t) denote
the assets held by the k-th largest bank at time t. We follow Gabaix [13] and
Carvalho and Gabaix [6] and define fundamental volatility, or the granular
residual, as the volatility of total bank assets a(t) = a1(t) + · · · + aN(t) that
results from idiosyncratic, bank-specific shocks alone.8 In order to simplify
our analysis, we assume that shocks to bank assets are either aggregate — af-
fecting the assets of all banks in the same way — or idiosyncratic — affecting
the assets of only one individual bank.

We use the rank-based continuous-time framework described in Section
2. In the context of that framework, the assumption that banks face idiosyn-
cratic and aggregate shocks implies that, for all i = 1, . . . , N , bank asset
dynamics from (1) of Fernholz [9] simplify to

d log ai(t) = µi(t) dt+ δi(t) dBi(t) + δ(t) dBM(t), (3)

where µi, δi, and δ are measurable and adapted processes that are otherwise
general and unrestricted, and B(t) = (B1(t), . . . , BM(t)) is an M -dimensional
Brownian motion with M > N . In the simplified bank asset dynamics (3),

8These definitions imply that a(1)(t) ≥ · · · ≥ a(N)(t), and that θ(k)(t) = a(k)(t)/a(t),
for all k = 1, . . . , N .
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each Brownian motion Bi captures idiosyncratic shocks that affect the assets
of bank i alone while the common Brownian motion BM captures aggregate
shocks that affect the assets of all banks. If we apply Itô’s Lemma to (3),
then we have

dai(t)

ai(t)
=

(
µi(t) +

δ2i (t) + δ2(t)

2

)
dt+ δi(t) dBi(t) + δ(t) dBM(t), (4)

for all i = 1, . . . , N .
If we add up the asset changes dai characterized in (4) for all banks

i = 1, . . . , N , then we have that

da(t) =
N∑
i=1

(
µi(t) +

δ2i (t) + δ2(t)

2

)
ai(t) dt+δ(t)a(t) dBM(t)+

N∑
i=1

δi(t)ai(t) dBi(t),

(5)
which yields

da(t)

a(t)
=

N∑
i=1

(
µi(t) +

δ2i (t) + δ2(t)

2

)
ai(t)

a(t)
dt+ δ(t) dBM(t) +

N∑
i=1

δi(t)
ai(t)

a(t)
dBi(t),

=
N∑
i=1

(
µi(t) +

δ2i (t) + δ2(t)

2

)
θi(t) dt+ δ(t) dBM(t) +

N∑
i=1

δi(t)θi(t) dBi(t).

(6)

The first term of (6) measures the expected change in the value of total bank
assets a(t) = a1(t) + · · · + aN(t). The second term measures the volatility
of total assets caused by aggregate shocks. These first two terms do not
contribute to fundamental volatility. The third term measures the volatility
of total bank assets resulting from idiosyncratic, bank-specific shocks alone,
which is the definition of fundamental volatility. Indeed, (6) is a continuous-
time version of the characterization (3) from Gabaix [13]. Crucial to our
analysis of fundamental volatility in the banking sector, however, is rank-
based variation in both the asset shares θi and the idiosyncratic volatilities
δi from (6). Figures 1 and 4, for example, illustrate that both the asset shares
and the idiosyncratic asset volatilities of different size-ranked U.S. banks have
changed over time. Our rank-based framework is uniquely suited to account
for static rank-based variation in asset shares and idiosyncratic volatilities as
well as changes in the structure of that variation over time.
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In order to account for rank-based variation in entity-specific bank asset
shares, θi, and entity-specific idiosyncratic asset volatilities, δi, we rewrite
(6) in terms of rank-based asset shares, θ(k), and rank-based idiosyncratic
volatilities, δ(k). This yields

da(t)

a(t)
=

N∑
k=1

δ(k)(t)θ(k)(t) dB(k)(t) + other terms not affecting
fundamental volatility , (7)

which provides a rank-based version of the characterization of fundamental
volatility (3) from Gabaix [13]. To our knowledge, (7) is the first granular,
rank-based characterization of fundamental volatility.

An interesting implication of (7) is that fundamental volatility is deter-
mined by both the magnitude, δ(k), and the weighting, θ(k), of bank-specific
shocks. At the same time, idiosyncratic, bank-specific shocks are also a
shaping force of the bank size distribution, as described by (2) from Theo-
rem 2.1. In particular, the rank-based parameters σ2

k from (2) measure the
time-averaged value of δ(k). Thus, idiosyncratic shocks have both a direct
effect on fundamental volatility via their magnitude as well as an indirect
effect via their impact on the weighting. Our novel rank-based methods al-
low us to characterize this dual role for idiosyncratic volatility as a source of
fundamental volatility.

4.2. Fundamental Volatility and Rank-Based Heterogeneity

According to Figure 1, the share of assets held by the largest U.S. banks
increased after the 1990s. Figure 4 shows that the idiosyncratic asset volatil-
ities of the largest U.S. banks declined over this same time period. According
to (7), these two changes imply opposite effects on the evolution of funda-
mental volatility in the U.S. banking sector over time. The rise in asset shares
in the left panel of Figure 1 is equivalent to a rise in θ(k) at the highest ranks
k, while the decline in idiosyncratic volatilities in the left panel of Figure 4
is equivalent to a decline in δ(k) at those same high ranks. Put differently,
the weighting of bank-specific shocks for the biggest U.S. banks rose at the
same time that the magnitude of those bank-specific shocks fell.

In order to determine which of the opposing effects uncovered by Figures
1 and 4 dominates, we use the rank-based estimation outlined in Section 2
together with the rank-based characterization of fundamental volatility (7).
More specifically, we use five-quarter rolling window estimates of the param-
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eters σk to estimate time-averaged values of δ(k) from (7).9 These rolling
window estimates of the idiosyncratic volatilities are unsmoothed across dif-
ferent ranked banks, as in Figure 4. We then multiply these rank-based, five-
quarter rolling window estimates of δ(k) times the rank-based, single-quarter
weights θ(k) as in (7) to obtain estimates of fundamental volatility.

The left panel of Figure 8 plots the fundamental volatility of total U.S.
bank assets over the full 1986 Q2 - 2016 Q3 time sample using the rank-
based estimation described above. Other than a large and dramatic rise in
fundamental volatility around the financial crisis of 2008, the figure illustrates
that U.S. fundamental volatility has been gradually declining since the late
1990s, with some of the lowest levels on record occurring in the last few years.
This general pattern aligns with the dynamics of the rank-based idiosyncratic
asset volatilities shown in the left panel of Figure 4.

Upon careful examination, we see that the changing asset volatilities of
the largest U.S. banks in the left panel of Figure 4 most closely match the
changes in U.S. fundamental volatility in the left panel of Figure 8. This
match is especially pronounced after the rise of big banks in the late 1990s.
The characterization of fundamental volatility (7) predicts exactly this. Ac-
cording to (7), the idiosyncratic volatilities of the largest banks, δ(k), will
increasingly dominate fundamental volatility as the weight, θ(k), of those
banks rises. Of course, the left panel of Figure 1 shows that these weights
rose during the 1990s for U.S. banks. In this way, the tight alignment after
the 1990s between the volatilities of the largest U.S. banks in Figure 4 and
U.S. fundamental volatility in Figure 9 is exactly what is expected.

In contrast to the U.S., European banks saw little change in idiosyncratic
asset volatilities from 2008-2016, as seen in the right panels of Figures 2 and
4. During this same time period, however, Figure 1 shows a clear decline
in the share of assets held by the largest European banks. According to
(7), then, fundamental volatility in the European banking sector should also
decrease. We confirm this prediction in the right panel of Figure 8, which
demonstrates that the fundamental volatility of European bank assets fell by
more than 50% from 2008-2016.

9Recall from Section 2 that the parameters σk measure the idiosyncratic asset volatili-
ties of both the k-th and (k+ 1)-th largest banks together. In order to obtain values that
correspond to idiosyncratic asset volatilities for a single ranked bank, then, it is neces-
sary to adjust the estimates of σk reported in Figures 2 and 4. Our estimates of δ(k) are
adjusted in this way.
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How important is rank-based heterogeneity for the dynamics of funda-
mental volatility? Figure 8 plots the fundamental volatility of bank assets
when imposing Gibrat’s law, which implies a common idiosyncratic volatility
σk for all banks. This homogeneous fundamental volatility is plotted along-
side our novel heterogeneous fundamental volatility that allows for rank-based
variation in idiosyncratic volatilities in extension of the framework of Gabaix
[13]. In the case of Europe, rank-based variation in idiosyncratic volatilities
does not substantially alter the calculated values of fundamental volatility.
This is apparent given the close similarity between heterogeneous (solid black
line) and homogeneous (dashed red line) fundamental volatility in the right
panel of Figure 8. Both measures show a decline from 2008-2016. This is not
surprising, since the right panels of Figures 2 and 4 show little variation in
idiosyncratic asset volatilities across different ranked European banks.

In the case of the U.S. banking sector, however, rank-based heterogeneity
is crucial. This is evident from the different trajectories of heterogeneous
(solid black line) and homogeneous (dashed red line) fundamental volatility
in the left panel of Figure 8. If we impose a common idiosyncratic volatility
across all U.S. banks, then the rising concentration of U.S. bank assets of
Figure 1 dominates the calculation of fundamental volatility and leads to a
substantial measured rise from 1986-2016. Our rank-based methods reveal
that this measured rise is inaccurate, however, and that the true decline
in U.S. fundamental volatility is a direct consequence of the decline in the
idiosyncratic asset volatilities of the largest U.S. banks.

The heterogeneous and homogeneous measures of U.S. fundamental volatil-
ity also diverge markedly around the financial crisis of 2008. According to
the left panel of Figure 8, there was a substantial rise in fundamental volatil-
ity during the crisis that is absent when imposing a common idiosyncratic
volatility. This divergence emerges naturally from our framework, since the
spike in fundamental volatility around 2008 was driven by a spike in idiosyn-
cratic volatility at only the very largest U.S. banks, as shown in Figure 4. If
we impose a common volatility and thus average this rise in volatility at the
largest banks across all ranks, then the result is little change in measured
fundamental volatility as shown by the relatively stable homogeneous funda-
mental volatility (red dashed line) in the left panel of Figure 8. The standard
approach thus implausibly suggests that the financial crisis of 2008 — which
emanated from the largest U.S. banks — did not meaningfully impact fun-
damental volatility. Therefore, for both the short- and long-run behavior of
U.S. fundamental volatility, the departure from the strict form of Gibrat’s
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law of our rank-based approach provides new insights that are not possible
using more established methods.

4.3. Fundamental and Aggregate Volatility

It is useful to investigate the relationship between the fundamental volatil-
ity of bank assets and the aggregate volatility of bank assets. In Figure 9,
we plot the fundamental volatility of the U.S. and European banking sectors
from Figure 8 together with the aggregate asset volatility of the 500 largest
U.S. banks (left panel) and the 100 largest European banks (right panel). To
maintain consistency with our measure of fundamental volatility, we report
aggregate volatility as the annualized standard deviation of log asset growth
for U.S. and European banks.10

Figure 9 reveals a tighter link between fundamental and aggregate asset
volatility for U.S. banks relative to European banks. Not only is the level of
fundamental asset volatility closer to the level of aggregate asset volatility in
the U.S. than in Europe, but Figure 9 also demonstrates that the dynamics of
fundamental and aggregate volatility are more closely aligned in the U.S. than
in Europe. These contrasting results suggest that idiosyncratic, bank-specific
shocks are a more important driver of aggregate asset movements in the
U.S. Figure 9 shows that the rise in aggregate volatility around the financial
crisis of 2008 is primarily the result of a corresponding rise in fundamental
volatility during this period. Furthermore, as we saw in Figures 4 and 8, this
jump in U.S. fundamental volatility is driven by a jump in the magnitude of
idiosyncratic shocks at the largest U.S. banks.

Our results suggest that common, aggregate shocks that affect the entire
banking sector are a more important source of aggregate asset movements in
Europe. This can be seen plainly by the large rise in aggregate asset volatility
around the sovereign debt crisis of the early 2010s in the right panel of Figure
9. Unlike the simultaneous spike in U.S. fundamental and aggregate volatility
in 2008, the rise in aggregate asset volatility in Europe in the early 2010s
is not accompanied by a comparable change in the fundamental volatility of
the European banking sector. This means that aggregate shocks that were
common to the 100 largest European banks were the driver of this rise in
asset volatility during the sovereign debt crisis.

10Because fundamental and aggregate volatility are measured in terms of log asset
growth rather than the percentage change in assets, the sum of idiosyncratic and common
shocks is not exactly equal to aggregate volatility.
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The decline in fundamental volatility of the U.S. banking sector implies
that one important source of macroeconomic and financial instability was
historically low in 2016. Despite the tight link between fundamental and
aggregate volatility in the U.S., there is always the possibility of a com-
mon, systemic shock to the banking sector, as occurred in Europe during the
sovereign debt crisis. Furthermore, given that bank mergers and rising asset
concentration can in fact increase systemic risk [23], the rise of big banks
helps rationalize U.S. policymakers’ recent focus on systemic risk.
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Figure 1: Shares of total assets held by the largest U.S. banks, 1986-2016 (left panel), and
the largest European banks, 2008-2016 (right panel).
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Figure 2: Standard deviations of idiosyncratic asset volatilities (σk) for different ranked
U.S. (left panel) and European banks (right panel).
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Figure 3: Minus the reversion rates (αk) for different ranked U.S. (left panel) and European
banks (right panel).
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Figure 4: Five-quarter rolling window estimates of standard deviations of idiosyncratic
asset volatilities (σk) for different ranked U.S. banks, 1986-2016 (left panel), and different
ranked European banks, 2008-2016 (right panel).
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Figure 5: Shares of total assets held by the 500 largest U.S. banks, 1986 Q2 - 1998 Q3
(left panel) and 1998 Q4 - 2016 Q3 (right panel), as compared to the predicted shares.

1 2 5 10 20 50 100

Rank

Share of Total Assets (%)

0.001

0.01

0.1

1

10

Predicted
Average for 2008 Q1 - 2011 Q4

1 2 5 10 20 50 100

Rank

Share of Total Assets (%)

0.001

0.01

0.1

1

10

Predicted
Average for 2012 Q1 - 2016 Q3

Figure 6: Shares of total assets held by the 100 largest European banks, 2008 Q1 - 2011
Q4 (left panel) and 2012 Q1 - 2016 Q3 (right panel), as compared to the predicted shares.
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Online Appendix: “The Rise of Big U.S. Banks and the Fall of
Big European Banks: A Statistical Decomposition” (Ricardo T.
Fernholz and Christoffer Koch)

In this online appendix, we present alternative measures of the changing
concentration of U.S. and European bank assets. We also present results
regarding the statistical significance of the changes in idiosyncratic volatility
for U.S. banks before and after the 1990s as well as the rise in reversion
rates for European banks before and after 2011. Finally, we examine the
robustness of our empirical approach applied to U.S. banks.

Alternate Measures of Bank Asset Concentration

Figure 10 plots the changing Herfindahl index of asset concentration —
equal to the squared sum of asset shares θ2(1)(t)+ · · ·+θ2(N)(t) — for both U.S.
bank-holding companies from 1986-2016 and European commercial banks
from 2008-2016. A higher Herfindahl index implies greater bank asset con-
centration. Thus, the right panel of Figure 10 shows rising asset concentra-
tion for U.S. banks while the left panel shows falling asset concentration for
European banks, consistent with Figure 1.

In Figure 11, we plot minus the estimated log-log slope of assets versus
rank for the top 100 largest U.S. banks and the top 40 largest European
banks in each quarter of our sample periods. Each panel of this figure plots
two sets of estimates, one obtained using the well-known Hill estimator [15]
and the other obtained using the more recent “Rank − 1/2” OLS estimator
[14]. Figure 11 concurs with Figures 1 and 10 since a more negative slope
corresponds to a more concentrated asset distribution.

The estimates of the log-log slopes of assets versus rank in Figure 11
are equal to the inverse of the Pareto exponents of the U.S. and European
bank size distributions. Accordingly, a smaller Pareto exponent (and hence a
more negative slope) corresponds to a more concentrated distribution. Fur-
thermore, a Pareto exponent less than one, which is equivalent to a log-log
slope steeper than minus one, implies that the mean of the bank size distri-
bution is infinite. One implication of Figure 11, then, is that the mean of
the distribution of U.S. bank assets grew unbounded during the 1990s.

Finally, Table 1 reports the results of time-series regressions of the Hill
and Rank - 1/2 OLS estimates of the slope of the log-log plot of U.S. bank size
versus rank shown in the left panel of Figure 11. These regressions include
a dummy for those quarters in which the Gramm-Leach-Bliley Act, which
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repealed the Glass-Steagall Act, was in effect. According to this table, the
repeal of Glass-Steagall is associated with a statistically significant rise in
the concentration of U.S. bank assets.

Confidence Intervals and Statistical Significance

It is not possible to generate confidence intervals and p-values using clas-
sical techniques in this setting because the empirical distributions of the
idiosyncratic volatilities σk and reversion rates −αk are unknown. However,
using bootstrap resampling, it is possible to generate confidence intervals and
determine the statistical significance of our results in Figures 2 and 3.

We focus first on the changes in idiosyncratic volatilities for U.S. banks
shown in the left panel of Figure 2. For each each of the 1986 Q2 - 1998 Q3
and 1998 Q4 - 2016 Q3 time periods, we randomly choose pairs of consecutive
quarters with replacement until we have a random sample equal in length to
the original data sample. This bootstrap resampling procedure is repeated
10,000 times, thus generating 20,000 bootstrap random samples — 10,000
before 1998 Q3, and 10,000 after. Using these random samples, we generate
two sets of 10,000 estimates of the idiosyncratic volatilities σk following the
procedure of Fernholz [9], and then construct confidence intervals for each
time period based on these two sets of estimates.

In Figure 12, we report point estimates and 95% confidence intervals for
the idiosyncratic volatilities σk for different ranked U.S. bank-holding compa-
nies. These estimates are generated using the bootstrap resample procedure
described above, and cover the same two time periods as in the left panel of
Figure 2. Figure 12 shows that the average σk for the top 350 largest banks
in each time period is outside of the other time period’s 95% confidence in-
terval. This result suggests that the difference between these estimates is
statistically significant.

Fortunately, questions of statistical significance are easily addressed using
this same method of bootstrap resampling. The left panel of Figure 14 shows
the probability that the idiosyncratic volatilities σk for different ranked U.S.
banks from 1986 Q2 - 1998 Q3 are less than or equal to the σk from 1998
Q4 - 2016 Q3. Like the confidence intervals displayed in Figure 12, these
probabilities are based on the results of 10,000 bootstrap resample estimates
of the idiosyncratic volatilities σk. More specifically, these probabilities are
generated by examining the number of resampled data sets in which the
estimated σk from 1986 Q2 - 1998 Q3 is less than or equal to the estimated
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σk from 1998 Q4 - 2016 Q3.11 This procedure is repeated for all 500 ranks
in the size distribution of banks.

The computed probabilities shown in the left panel of Figure 14 are es-
sentially sets of p-values for the hypothesis of no decrease in U.S. bank id-
iosyncratic asset volatilities after 1998 Q3. As we see from the figure, then,
one of the most important results discussed in Section 3 — the fall in the
idiosyncratic asset volatilities of the largest banks after 1998 Q3 — is statis-
tically significant at the 5% level. This decline in idiosyncratic volatility is
also statistically significant at the 1% level for some middle-sized banks.

In Section 3, we showed that the fall of European big banks after 2011 is a
consequence of higher reversion rates. Accordingly, we wish to use the same
bootstrap resampling procedure to investigate the statistical significance of
the changes in European bank asset reversion rates shown in the right panel of
Figure 3. Following the same procedure as for U.S. banks, then, we generate
20,000 bootstrap samples — 10,000 before 2011 Q4, and 10,000 after — and
then generate two sets of 10,000 estimates of the reversion rates −αk from
which we can calculate confidence intervals and p-values.

In Figure 13, we report point estimates and 95% confidence intervals for
the relative growth rates αk for different ranked European commercial banks.
The figure shows that the average αk for many middle-sized banks in each
time period is outside of the other time period’s 95% confidence interval.
In the right panel of Figure 14, we report p-values for the hypothesis of no
decrease (no increase) in European asset relative growth rates αk (reversion
rates −αk) after 2011 Q4. These p-values are computed in the same way
as for the U.S. bank idiosyncratic asset volatility p-values shown in the left
panel of Figure 14. According to the right panel of Figure 14, the higher
asset reversion rates after 2011 Q4 for many middle-sized European banks is
statistically significant at both the 1% and 5% levels. This result is notable
given the small sample size of our European bank data set.

Rank-Based Methods versus Gibrat’s Law

In order to examine the robustness of our estimated parameters σk and
αk, we perform a simple out-of-sample analysis using our estimates of these
parameters for the U.S. banking sector as shown in the left panels of Figures

11Even though we assume that the bootstrap estimates of σk are independent across all
ranks k, some rank-dependence is in fact introduced into these estimates when they are
smoothed across ranks.
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2 and 3.12 The goal is to examine the out-of-sample accuracy of our rank-
based methods as compared to Gibrat’s law. For both the 1986 Q2 - 1998 Q3
and 1998 Q4 - 2016 Q3 time periods, we use the first half of the time period
to estimate parameters σk and αk using the procedure outlined in Section 2.
We also use these half-samples to estimate these parameters while imposing
Gibrat’s law, so that σ1 = σ2 = · · · = σN−1 > 0 and α1 = α2 = · · · = αN−1 <
0. Thus, we have two sets of parameters σk and αk to compare — the first
is unconstrained and estimated using the procedure of Section 2, and the
second is constrained and estimated while imposing Gibrat’s law.

The next step is to generate estimates of bank asset shares θ(k) using
equation (2) from Theorem 2.1. We generate these predicted asset shares
using both the unconstrained and constrained (Gibrat’s law) sets of param-
eters σk and αk estimated over the first half of both the 1986 Q2 - 1998
Q3 and 1998 Q4 - 2016 Q3 time periods. These predicted shares can then
be compared, out of sample, to the observed asset shares over the second
half of the 1986 Q2 - 1998 Q3 and 1998 Q4 - 2016 Q3 time periods. The
root mean squared error (RMSE) between predicted and observed log as-
set shares using the unconstrained estimates of the parameters σk and αk is
1.8931 over the second half of the 1986 Q2 - 1998 Q3 time period, and 0.2988
over the second half of the 1998 Q4 - 2016 Q3 time period. In contrast, the
constrained estimates of these parameters that impose Gibrat’s law generate
RMSEs between predicted and observed log asset shares of 3.4267 and 7.3403
over, respectively, the second half of the 1986 Q2 - 1998 Q3 and 1998 Q4 -
2016 Q3 time periods. According to these results, then, the extra flexibil-
ity of our nonparametric, rank-based methods generates lower out-of-sample
prediction errors than Gibrat’s law. Furthermore, over the 1998 Q4 - 2016
Q3 time period, this goodness-of-fit improvement is quite substantial.

Figure 15 helps us to visualize the dramatically improved fit of our rank-
based framework. This figure plots the predicted distribution of U.S. bank
assets both with and without imposing Gibrat’s law when estimating the
parameters σk and αk. The distribution curves shown in Figure 15 are dif-
ferent from the out-of-sample goodness-of-fit analysis described above, since

12We focus on the estimated parameters for the U.S. banking sector because of the larger
sample period for this data set (1986-2016 rather than 2008-2016). If we perform a similar
out-of-sample analysis using half-samples of our European bank asset data, then we must
estimate the parameters σk and αk using as few as eight quarters of data. This would not
be an appropriate application of our rank-based empirical methods.
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the parameters σk and αk (both with and without imposing Gibrat’s law) are
estimated using the full 1998 Q4 - 2016 Q3 sample period. Nonetheless, sim-
ilar to the out-of-sample analysis, this figure shows that Gibrat’s law again
fails to accurately describe the distribution of U.S. bank assets. In fact, the
distribution implied by Gibrat’s law in Figure 15 has the top 10 banks hold-
ing 98% of total assets, while the true distribution has this share at 62% on
average from 1998 Q4 - 2016 Q3.
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Hill Rank - 1/2

Gramm-Leach-Bliley Act Dummy 0.417*** 0.490***
(0.018) (0.020)

Constant 1.130*** 0.851***
(0.014) (0.015)

R-Squared 0.812 0.834
N 122 122
* p¡0.05, ** p¡0.01, *** p¡0.001

Table 1: Time-series regressions of Hill and Rank - 1/2 OLS estimates of the slope of the
log-log plot of U.S. bank size versus rank.
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Figure 10: Herfindahl index for U.S. bank assets, 1986-2016 (left panel), and European
bank assets, 2008-2016 (right panel).
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Figure 11: Minus the estimated slope of the log-log plot of size versus rank for the top
100 U.S. banks, 1986-2016 (left panel), and the top 40 European banks, 2008-2016 (right
panel).
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Figure 12: Standard deviations of idiosyncratic asset volatilities (σk) and 95% confidence
intervals for different ranked U.S. banks.
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Figure 13: Minus the revision rates (αk) and 95% confidence intervals for different ranked
European banks.
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Figure 14: Probability that σk from 1986 Q2 - 1998 Q3 is less than or equal to σk from
1998 Q4 - 2016 Q3 for different ranked U.S. banks (left panel). Probability that αk from
2008 Q1 - 2011 Q4 is less than or equal to αk from 2012 Q1 - 2016 Q3 for different ranked
European banks (right panel).
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Figure 15: Shares of total assets held by the 500 largest U.S. banks, 1998 Q4 - 2016 Q3, as
compared to the predicted shares using nonparametric dynamic power law methods and
the predicted shares when imposing Gibrat’s law.
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